Math 500

Comprehensive Exam

January 2006

1.	Let G	be a	group	of	order	p^n	>	1	where	p	is	a	prime.	
----	---------	------	-------	----	-------	-------	---	---	-------	---	----	---	--------	--

- (a) Prove that the center of G has order > 1. [6 pts]
- (b) Prove that there is a series of *normal* subgroups of G

$$1 = G_0 < G_1 < \cdots < G_n = G$$

such that $|G_{i+1}:G_i|=p$. [7 pts]

- (c) If H is a subgroup of G, show that it is *subnormal* in G, i.e., there is a chain of subgroups $H = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_m = G$, where $m \leq n$. [7 pts]
- 2. (a) Let P be a Sylow p-subgroup of a finite group G and let $N \triangleleft G$. Prove that $P \cap N$ is a Sylow p-subgroup of N. [7 pts]
- (b) Show that the conclusion of 2(a) may be false if the subgroup N is not normal in G.
 - (c) Prove that every group of order 666 is solvable. [9 pts]
- 3. Prove or disprove each of the following statements:
 - (a) $\mathbb{Z}[x, y, z]/(x y)$ is an integral domain; [5 pts]
 - (b) every maximal ideal of $\mathbb{R}[x]$ has the form (x-a) where $a \in \mathbb{R}$; [3 pts]
 - (c) $\mathbb{C}[x,y]$ is a principal ideal domain; [5 pts]
 - (d) $\mathbb{Q}[x,y]/(xy-1)$ is a unique factorization domain. [7 pts]

4. (a) Show from first principles that a finite field has order equal to a power of a prime.

[6 pts]

In the rest of the problem E denotes the field $\mathbb{Q}(\sqrt{5}-\sqrt{3})$.

(b) Prove that $\sqrt{3} \in E$ and $\sqrt{5} \in E$.

[3 pts]

(c) Find $(E:\mathbb{Q})$.

[4 pts]

(d) Find the irreducible polynomial of $\sqrt{5} - \sqrt{3}$ over \mathbb{Q} .

[7 pts]

- 5. Let f be a polynomial of degree 5 over \mathbb{Q} and assume that the Galois group of f is isomorphic with the alternating group A_5 . Let K be the splitting field of f.
 - (a) Prove that f is irreducible over \mathbb{Q} .

[5 pts]

(b) Show that no subfield of K can have degree 2, 3 or 4 over \mathbb{Q} .

[5 pts]

(c) Determine the number of subfields of K which have degree 12 over \mathbb{Q} .

[7 pts]

(d) How many normal subfields does K have?

[3 pts]