Comprehensive Exam in Algebra (500) August, 2013.

Answer all six questions. Each question is worth 20 points.

1. Let G be a finite group acting on a finite set X. Let

$$X^G = \{ x \in X \mid gx = x \text{ for all } g \in G \},\$$

and for any $x \in X$ let

$$G \cdot x = \{ gx \mid g \in G \},$$
 and $G_x = \{ g \in G \mid gx = x \}.$

(a) Prove that

(i)
$$X = X^G \cup \left(\bigcup_{\substack{x \in X \\ \operatorname{Card} G \cdot x \neq 1}} G \cdot x\right)$$
, (ii) $\operatorname{Card}(G \cdot x) = [G : G_x]$.

(Card denotes "cardinality".)

- (b) Suppose that G is a p-group. Prove that $\operatorname{Card} X \equiv \operatorname{Card} X^G \mod p$.
- (c) Prove that the center of a non-trivial p-group is non-trivial. (Hint: take X = G with a suitable action and use (b).)
- (d) Deduce that any p-group is nilpotent.
- 2. (a) Let G be a finite group, and let $H \subseteq G$ be a normal subgroup. Suppose that p is a prime dividing the order of G, but p does not divide [G:H]. Show that all Sylow-p-subgroups of G are contained in H.
 - (b) Suppose G has order p^2q , where p and q are distinct primes. Show that G is not simple.
- 3. Determine a complete list of all non-isomorphic abelian groups of order 1800.
- 4. Let R be an integral domain with quotient field F. Let $f(x) \in R[x]$ be a monic polynomial, and assume f(x) = g(x)h(x) where g, h are monic polynomials in F[x] of smaller degree than f(x). Prove that if $g(x) \notin R[x]$, then R is not a UFD. Deduce that $\mathbb{Z}[2\sqrt{2}]$ is not a UFD.
- 5. (a) Let k be a field, and let $f(x) \in k[x]$ of degree n. Let L denote the splitting field of f(x) over k and let G be the Galois group of L/k. Show how to identify G with a subgroup of S_n .
 - (b) With hypotheses as in (a), let $f(x) = x^3 + ax + b$, and assume that f(x) is irreducible in k[x]. Discuss the possibilities for G and its corresponding orders, and how these depend on a and b. If α is a root of f(x), is $k(\alpha)$ normal over k?
 - (c) Determine the Galois group of $x^3 x + 1$ over \mathbb{Q} .
- 6. Let F be a field, and let G be a finite group of automorphisms of F of order n. Let $k = F^G$ be the fixed field of G.
 - (a) Let $\alpha \in F$ and let $\sigma_1, \ldots, \sigma_r$ be a maximal set of elements of G such that $\sigma_1 \alpha, \ldots, \sigma_r \alpha$ are distinct. Show that every $\tau \in G$ induces a bijection on $\{\sigma_1 \alpha, \ldots, \sigma_r \alpha\}$ via multiplication on the left.
 - (b) Prove that every $\alpha \in F$ is the root of a polynomial $f(x) \in k[x]$, where all roots are distinct and contained in F, and $\deg f(x) \leq n$. (Hint: use (a).)
 - (c) Deduce that F is a finite Galois extension of k of degree n with Galois group G.