Comprehensive Exam in Algebra (500)

August, 2012.

Each question is worth 25 points.

- 1. (a) Let H, K be subgroups of a group G. Show that if $H \subseteq G$, then HK is also a subgroup of G.
 - (b) Given an example to show that HK can fail to be a subgroup if neither H or K are normal.
 - (c) Prove that if $H \subseteq G$ of prime index p, then for any subgroup $K \subseteq G$ either (i) $K \subseteq H$ or (ii) G = HK and $|K : K \cap H| = p$.
- 2. (a) Let P be a p-Sylow subgroup of a finite group G. Show that if $N \subseteq G$ is a normal subgroup of G, then $P \cap N$ is a p-Sylow subgroup of N.
 - (b) Give an example to show that (a) can fail if N is not normal.
 - (c) Show that every group of order $460 = 4 \cdot 5 \cdot 23$ is solvable.
- 3. Let R be an integral domain.
 - (a) Given an element $x \in R$ define what it means for x to be irreducible, and what it means for x to be prime. By proof or counterexmaple, determine whether irreducible implies prime, and whether prime implies irreducible.
 - (b) Show that if R is a PID then $x \in R$ is prime if and only if it is irreducible.
 - (c) Let A denote the ring $\mathbb{Z}(\sqrt{-5}) = \{ a + b\sqrt{-5} \mid a, b \in \mathbb{Z} \}$. Prove that A is not a principal ideal domain.
- 4. Let $E = \mathbb{Q}(a)$ where $a = \sqrt{1 + \sqrt{2}}$.
 - (a) Find the irreducible polynomial of a.
 - (b) What is $(E:\mathbb{Q})$.
 - (c) Identify the Galois group of E/\mathbb{Q} .
 - (d) How many subfields of E are there?