Comprehensive Exam, MATH 500, August 23, 2010.

- 1. Let p be an odd prime and S_p the symmetric group of p objects.
 - (a) If P is a Sylow p-subgroup of S_p , what is the order of P?
 - (b) How many cycles of length p are there in S_p ?
 - (c) Calculate the number n_p of Sylow p-subgroups in S_p .
 - (d) Use this to prove Wilson's Theorem: $(p-1)! \equiv -1 \mod p$.
- 2. Let \mathbb{Q} be the field of rational numbers, and $R = \mathbb{Q}[x,y]/\langle x^2,y^3\rangle$.
 - (a) Show that for any prime ideal \mathfrak{p} we have $x, y \in \mathfrak{p}$.
 - (b) Show that R is a local ring: R has a unique maximal ideal.
- 3. Let p be a prime, \mathbb{F}_p the prime field of order p, and $\mathbb{E} = \mathbb{F}_q$, for $q = p^n$, $n \ge 1$.
 - (a) Prove that \mathbb{E}^{\times} , the multipliciative group of non zero elements of \mathbb{E} , is a cyclic group. (You can use the classification of finite Abelian groups here.)
 - (b) Show that \mathbb{E} is the splitting field of the polynomial $x^q x \in \mathbb{F}_p[x]$.
- 4. (a) Define $obj(\mathcal{C})$ to be the set of all continuous maps $\varphi : \mathbb{R} \to \mathbb{R}$. For $\varphi, \varphi' \in obj(\mathcal{C})$, let $Hom(\varphi, \varphi')$ be the set of all commutative diagrams

such that f is continuous, and define the composition of

Does this define a category? Justify the answer-

(b) Define $obj(\mathcal{C})$ to be \mathbb{Q} . For $a, b \in \mathbb{Q}$, define

$$Hom(a,b) := \begin{cases} \text{the set consisting of one pair } (a,b) & \text{if } a < b \\ \emptyset & \text{if } a \ge b \end{cases}$$

and the composition $(a, b) \circ (b, c)$ to be (a, c). Does this define a category? Justify the answer.

(c) For the ones above that are categories, determine whether those categories have initial objects, terminal (or final) objects, zero objects.