COMPREHENSIVE EXAM, MATHEMATICS 500 WEDNESDAY, AUGUST 19, 2009 **SOLUTIONS**

Group Problem.

- a. The generator of of C_5 should go to an element of order 5 or order 1 in S_5 . Answer: 4! + 1 = 25.
- **b.** The kernel of a homomorphism is a normal subgroup of S_5 , hence either S_5 or A_5 , but $|S_5/A_5|=2$ / 5. Hence the only homomorphism is the trivial
- c. $|\{(123)^k(45)^l\}| = 6$
- d. The number of Sylow subgroups of order 7 is 8 and each contains 6 elements of order 7. Answer: 48.

Ring Problem.

- a. $\mathbb{R}[x]$ is a PID. $\mathbb{R} \times \mathbb{R}$ is not a domain.
- **b.** (x + a) or $(x^2 + 2bx + c)$, where $b^2 < c$.
- c. $\mathbb{R} \times 0$ and $0 \times \mathbb{R}$.

Field Problem. First of all, $\sqrt{2}$, $\sqrt{3} \in \mathbb{Q}[\sqrt{2} + \sqrt{3}]$. Hence $\mathbb{Q}[\sqrt{2} + \sqrt{3}] = \mathbb{Q}[\sqrt{2}, \sqrt{3}].$

- **a.** The degree is 4; the Galois group is $C_2 \times C_2$.
- b. Since \mathbb{Q} has no subfields, subfields of F correspond to subgroups of its Galois group over \mathbb{Q} . Answer: \mathbb{Q} , $\mathbb{Q}[\sqrt{2}]$, $\mathbb{Q}[\sqrt{3}]$, $\mathbb{Q}[\sqrt{6}]$, $\mathbb{Q}[\sqrt{2}+\sqrt{3}]$. c. $p(x) = \prod_{\pm \pm} (x \pm \sqrt{2} \pm \sqrt{3}) = x^4 - 10x^2 + 1$.