## COMPREHENSIVE EXAM, MATHEMATICS 500 WEDNESDAY, AUG 20, 2008

Justify your answers. Good luck.

**Problem 1.** Let p be a prime number.

a. (10 points) Define a Sylow p-subgroup of a finite group.

**b.** (10 points) Let  $\mathbb{F}_p$  be a finite field with p elements,  $GL(2, \mathbb{F}_p)$  the group of invertible 2x2 matrices with  $\mathbb{F}_p$ -coefficients, and  $U(2, \mathbb{F}_p) = \{\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} | a \in \mathbb{F}_p\}$  the subgroup of upper-triangular unipotent matrices. Show that  $U(2, \mathbb{F}_p)$  is a Sylow p-subgroup of  $GL(2, \mathbb{F}_p)$ .

c. (10 points) Find the number of Sylow p-subgroups of  $GL(2, \mathbb{F}_n)$ .

**Problem 2.** (10 points) Find (a) all homomorphisms of additive groups  $\mathbb{Z} \to \mathbb{Q}$  and (b) all homomorphisms of rings  $\mathbb{Z} \to \mathbb{Q}$ .

[In this problem ring homomorphisms are not required to map 1 to 1]

**Problem 3.** Let R be an integral domain.

- a. (10 points) Define when an element  $x \in R$  is irreducible and when it is prime. Prove or give a counter-example: irreducible  $\Rightarrow$  prime, prime  $\Rightarrow$  irreducible.
- b. (10 points) Define when R is Euclidean and show that if R is Euclidean then it is a principal ideal domain.
- c. (10 points) Show that if R is a principal ideal domain and  $x \in R$  then x is prime  $\Leftrightarrow x$  is irreducible.

**Problem 4.** Let p be a prime number and consider a polynomial

$$f_p(x) = x^4 + p^2 \in \mathbb{Q}[x]$$

- **a.** (10 points) Find the splitting field E of  $f_p$ .
- **b.** (10 points) Find the Galois group of E over  $\mathbb{Q}$ .
- **c.** (10 points) Is  $f_p$  irreducible in  $\mathbb{Q}[x]$ ?

The answers might depend on p