Math 500

Comprehensive Examination

August 2007

(Answer all five questions: each question is worth 20pts.)

1. Let G be a finite group.

- (a) Let P be a Sylow p-subgroup of G and write $N = N_G(P)$ for its normalizer. If H is a subgroup such that $N \leq H \leq G$, prove that $H = N_G(H)$.
- (b) Assume that every subgroup S of G is subnormal, i.e., there is a series in G containing S. Prove that G is a direct product of p-groups for various primes p.

2.

- (a) State Eisenstein's Criterion for irreducibility of a polynomial $f \in R[x]$, where R is a unique factorization domain, and then prove its validity.
- (b) Let $f = x^5 + 5x^4 + 10x^3 + 10x^2 + x 5 \in \mathbb{Q}[x]$. Prove that f is irreducible over \mathbb{Q} . [You may assume Gauss's Lemma].
 - (c) Prove that $Gal(f) \simeq S_5$ where f is the polynomial in 2(b).

3.

- (a) Let R denote the ring $\mathbb{Z}(\sqrt{-5}) = \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\}$. Prove that R is *not* a unique factorization domain.
- (b) Suppose that R is a commutative ring with identity such that the polynomial ring R[x] is a unique factorization domain. Prove that R is a unique factorization domain.

4.

- (a) Give a careful statement of Zorn's Lemma.
- (b) Let R be a commutative ring with identity and let $\{P_{\lambda} \mid : \lambda \in \Lambda\}$ be a chain of prime ideals of R. Prove that $\bigcap_{\lambda \in \Lambda} P_{\lambda}$ is a prime ideal of R.
- (c) Prove that every commutative ring R with identity has a minimal prime ideal by using Zorn's Lemma.
- **5.** Let E be a Galois extension of a field F.
- (a) If (E:F) = pq where p, q are primes and p > q, show that there is a subfield K such that (K:F) = q and (E:K) = p.
- (b) Assume that $(E:F) = p^k > 1$ where p is a prime. Prove that there is a subfield S of E which is normal over F and satisfies (E:S) = p.