Math 500

Comprehensive Examination

August 2006

(Answer all five questions: each question is worth 20pts.)

1.

- (a) Let G be a finite group and let H be a proper subgroup of G. Prove that G cannot equal the union of all the conjugates of H.
- (b) Suppose that G is a finite group with even order. Prove that the number of conjugacy classes in G with odd order is odd.

2.

- (a) Let G be a group with order p^mq where p and q are primes and p > q. Prove that G = PQ where P and Q are subgroups of orders p^m and q respectively and P is normal in G.
- (b) Suppose that m=2 in 2(a), so that $|G|=p^2q$, and assume that $p\not\equiv \pm 1 \pmod{q}$. Prove that G is abelian.
- **3.** Let $R = M_2(\mathbb{C})$ be the ring of all 2×2 matrices over the complex field \mathbb{C} . Put $X = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \in R$ and define a function $\theta : \mathbb{C}[x] \to R$ by the rule $\theta(f) = f(X)$.
 - (a) Prove that θ is a ring homomorphism.
 - (b) Identify the kernel of θ .
 - (c) Describe the prime ideals of $Im(\theta)$.
- **4.** Let $a = \sqrt{1 + \sqrt{2}}$ and put $E = \mathbb{Q}(a)$.
 - (a) Find the irreducible polynomial of a.
 - (b) Find $(E : \mathbb{Q})$.
 - (c) Identify the Galois group of E over \mathbb{Q} .

5.

- (a) Describe the standard method for showing that an irreducible quintic polynomial is not solvable by radicals and apply it to the polynomial $x^5 4x + 2$.
- (b) Determine whether $x^5 + 5x^3 x^2 5 \in \mathbb{Q}[x]$ is solvable by radicals. Justify your answer.