Logic Comprehensive Exam (Math 570) August 19, 2011

Do all five problems. Explain your answers. The problems have equal weight.

Notation: L is a first order language with equality, \mathbb{N} is the set $\{0, 1, 2, \dots\}$ of natural numbers.

- 1. Let L have just a constant symbol 0, a binary function symbol +, and a binary relation symbol R, and consider all L-structures $\mathcal{A} = (\mathbb{N}; 0, +, X)$ where 0 and + have their usual meaning, and $X \subseteq \mathbb{N}^2$ is the interpretation of R.
 - (a) Indicate an L-formula $\phi(x,y)$ that defines in every \mathcal{A} the set $\{(m,n)\in\mathbb{N}^2:\ m\leq n\}$.
 - (b) Indicate an L-sentence σ such that for every \mathcal{A} ,

$$\mathcal{A} \models \sigma \iff X \text{ is infinite.}$$

- 2. Suppose L has just a unary function symbol f and let $\mathcal{A} = (A, f)$ be an L-structure such that f is a permutation of A. Suppose further that there is no positive integer n such that f^n is the identity on A. (Here $f^1 = f$ and $f^{n+1} = f \circ f^n$.) Show that there is a countable L-structure $\mathcal{B} = (B, g)$ that satisfies the same L-sentences as \mathcal{A} with an element $b \in B$ such that $b, g(b), g^2(b), \ldots$ are all distinct.
- 3. Suppose L has just a unary relation symbol U and a binary relation symbol <. Let T be the theory whose models are the structures $\mathcal{A} = (A; P, <)$ where (A, <) is a dense linear ordering without endpoints, and $P = U^{\mathcal{A}}$ is a nonempty proper subset of A such that whenever $a < b \in P$, then $a \in P$.
 - (a) Find all complete L-theories extending T, by indicating for each such complete extension T' a sentence σ' such that $T \cup \{\sigma'\}$ axiomatizes T'. (You may use the \aleph_0 -categoricity of the theory of dense linear orderings without endpoints.)
 - (b) Indicate for each T' as in (a) a model of T'.
- 4. Let L be a finite language with at least a constant symbol 0 and a unary function symbol S, and let T be a consistent theory in L.
- (a) What does it mean for a function $f: \mathbb{N} \to \mathbb{N}$ to be representable as a function in T?
- (b) Use your definition in (a) to show that if $f, g : \mathbb{N} \to \mathbb{N}$ are representable as functions in T, then the composition $f \circ g$ is representable in T as a function.
- (c) Suppose that, for all $i, j \in \mathbb{N}$ with $i \neq j, T \vdash S^i 0 \neq S^j 0$. Show that if $f : \mathbb{N} \to \mathbb{N}$ is representable in T as a function and T is finitely axiomatizable, then f is computable in the intuitive sense.
- 5. Let E be an equivalence relation on \mathbb{N} which is recursively enumerable as a subset of \mathbb{N}^2 , that is, for some recursive functions $f, g : \mathbb{N} \to \mathbb{N}$, the following holds for all $m, n \in \mathbb{N}$:

$$mEn \iff \text{there is } k \text{ such that } f(k) = m, \ g(k) = n.$$

Suppose E has only finitely many classes. Show that $E \subseteq \mathbb{N}^2$ is recursive.