Do all five problems. Explain your answers. The problems have equal weight.
Notation: L is a first order language with equality, \mathbb{N} is the set $\{0,1,2, \ldots\}$ of natural numbers.

1. Let L have just a constant symbol 0 , a binary function symbol + , and a binary relation symbol R, and consider all L-structures $\mathcal{A}=(\mathbb{N} ; 0,+, X)$ where 0 and + have their usual meaning, and $X \subseteq \mathbb{N}^{2}$ is the interpretation of R.
(a) Indicate an L-formula $\phi(x, y)$ that defines in every \mathcal{A} the set $\left\{(m, n) \in \mathbb{N}^{2}: m \leq n\right\}$.
(b) Indicate an L-sentence σ such that for every \mathcal{A},

$$
\mathcal{A} \models \sigma \Longleftrightarrow X \text { is infinite. }
$$

2. Suppose L has just a unary function symbol f and let $\mathcal{A}=(A, f)$ be an L-structure such that f is a permutation of A. Suppose further that there is no positive integer n such that f^{n} is the identity on A. (Here $f^{1}=f$ and $f^{n+1}=f \circ f^{n}$.) Show that there is a countable L-structure $\mathcal{B}=(B, g)$ that satisfies the same L-sentences as \mathcal{A} with an element $b \in B$ such that $b, g(b), g^{2}(b), \ldots$ are all distinct.
3. Suppose L has just a unary relation symbol U and a binary relation symbol $<$. Let T be the theory whose models are the structures $\mathcal{A}=(A ; P,<)$ where $(A,<)$ is a dense linear ordering without endpoints, and $P=U^{\mathcal{A}}$ is a nonempty proper subset of A such that whenever $a<b \in P$, then $a \in P$.
(a) Find all complete L-theories extending T, by indicating for each such complete extension T^{\prime} a sentence σ^{\prime} such that $T \cup\left\{\sigma^{\prime}\right\}$ axiomatizes T^{\prime}. (You may use the \aleph_{0}-categoricity of the theory of dense linear orderings without endpoints.)
(b) Indicate for each T^{\prime} as in (a) a model of T^{\prime}.
4. Let L be a finite language with at least a constant symbol 0 and a unary function symbol S, and let T be a consistent theory in L.
(a) What does it mean for a function $f: \mathbb{N} \rightarrow \mathbb{N}$ to be representable as a function in T ?
(b) Use your definition in (a) to show that if $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are representable as functions in T, then the composition $f \circ g$ is representable in T as a function.
(c) Suppose that, for all $i, j \in \mathbb{N}$ with $i \neq j, T \vdash S^{i} 0 \neq S^{j} 0$. Show that if $f: \mathbb{N} \rightarrow \mathbb{N}$ is representable in T as a function and T is finitely axiomatizable, then f is computable in the intuitive sense.
5. Let E be an equivalence relation on \mathbb{N} which is recursively enumerable as a subset of \mathbb{N}^{2}, that is, for some recursive functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$, the following holds for all $m, n \in \mathbb{N}$:

$$
m E n \Longleftrightarrow \text { there is } k \text { such that } f(k)=m, g(k)=n
$$

Suppose E has only finitely many classes. Show that $E \subseteq \mathbb{N}^{2}$ is recursive.

