Logic Comprehensive Exam (Math 570), August 2007

There are 5 problems. Each problem is worth 20 points, for a total of 100 points. To receive credit, each of your solutions must be justified.

Convention

In the exercises, L will be a language and $=$ is considered a logical symbol. Any model-theoretic structure is by convention non-empty.

Another word for 'recursive' is 'computable'.

1 Exercise

Two sets $A, B \subseteq \mathbb{N}$ are said to be recursively isomorphic if there is a recursive bijection $h: \mathbb{N} \rightarrow \mathbb{N}$ such that $h[A]=B$.
(a) Show that if A and B are infinite recursive subsets of \mathbb{N} with infinite complements $\mathbb{N} \backslash A$ and $\mathbb{N} \backslash B$, then A and B are recursively isomorphic.
(b) Describe all recursive isomorphism classes of subsets of \mathbb{N}.

2 Exercise

Let L be a language with only finitely many non-logical symbols and let T be a decidable L-theory. Show that there is a complete decidable L-theory $T^{\prime} \supseteq T$.

3 Exercise

Let L be the language whose non-logical symbols are a binary predicate symbol $<$ and a unary predicate symbol P. Let \mathcal{Q} be L-structure $\mathcal{Q}=\left(\mathbb{Q},<^{\mathcal{Q}}, P^{\mathcal{Q}}\right)$, where $<^{\mathcal{Q}}$ denotes the usual strict ordering on \mathbb{Q} and $P^{\mathcal{Q}}=\{q \in \mathbb{Q} \mid q<0\}$.
(a) Is there an L-formula $\phi(x)$ defining the set $\{1\}$ in \mathcal{Q} ?
(b) Is there an L-formula $\psi(x)$ defining the set $\{0\}$ in \mathcal{Q} ?
(c) Indicate a finite set Σ of L-sentences such that for all L-sentences σ we have $\Sigma \vdash \sigma \Longleftrightarrow \mathcal{Q} \models \sigma$.

4 Exercise

Let L be the language whose only non-logical symbol is a binary relation symbol $<$ and let σ be an L-sentence. Suppose that for all n there is a model $\mathcal{M}=$ ($M,<^{\mathcal{M}}$) of σ such that $<^{\mathcal{M}}$ linearly orders M and $|M| \geq n$. Show that there is a model $\mathcal{M}=\left(M,<^{\mathcal{M}}\right)$ of σ, linearly ordered by $<^{\mathcal{M}}$, with distinct elements $a_{0}, a_{1}, a_{2}, \ldots$ such that

$$
\ldots<^{\mathcal{M}} a_{2}<^{\mathcal{M}} a_{1}<^{\mathcal{M}} a_{0} .
$$

5 Exercise

Let Σ be a finite consistent set of sentences in a language \mathcal{L} with only finitely many non-logical symbols, including a constant symbol 0 and a unary function symbol S.
(a) Define what it means for a set $A \subseteq \mathbb{N}$ to be representable in Σ.
(b) If $A \subseteq \mathbb{N}$ and $B \subseteq \mathbb{N}$ are representable in Σ, does it follow that the difference set $A \backslash B$ is representable in Σ ?

