Logic Comprehensive Exam (Math 570), August 2007

There are 5 problems. Each problem is worth 20 points, for a total of 100 points. To receive credit, each of your solutions must be justified.

Convention

In the exercises, L will be a language and = is considered a logical symbol. Any model-theoretic structure is by convention non-empty.

Another word for 'recursive' is 'computable'.

1 Exercise

Two sets $A, B \subseteq \mathbb{N}$ are said to be *recursively isomorphic* if there is a recursive bijection $h \colon \mathbb{N} \to \mathbb{N}$ such that h[A] = B.

- (a) Show that if A and B are infinite recursive subsets of \mathbb{N} with infinite complements $\mathbb{N} \setminus A$ and $\mathbb{N} \setminus B$, then A and B are recursively isomorphic.
- (b) Describe all recursive isomorphism classes of subsets of \mathbb{N} .

2 Exercise

Let L be a language with only finitely many non-logical symbols and let T be a decidable L-theory. Show that there is a complete decidable L-theory $T' \supseteq T$.

1

3 Exercise

Let *L* be the language whose non-logical symbols are a binary predicate symbol < and a unary predicate symbol *P*. Let Q be *L*-structure $Q = (\mathbb{Q}, <^Q, P^Q)$, where $<^Q$ denotes the usual strict ordering on \mathbb{Q} and $P^Q = \{q \in \mathbb{Q} \mid q < 0\}$.

- (a) Is there an *L*-formula $\phi(x)$ defining the set $\{1\}$ in Q?
- (b) Is there an *L*-formula $\psi(x)$ defining the set $\{0\}$ in Q?
- (c) Indicate a finite set Σ of *L*-sentences such that for all *L*-sentences σ we have $\Sigma \vdash \sigma \iff Q \models \sigma$.

4 Exercise

Let L be the language whose only non-logical symbol is a binary relation symbol < and let σ be an L-sentence. Suppose that for all n there is a model $\mathcal{M} = (M, <^{\mathcal{M}})$ of σ such that $<^{\mathcal{M}}$ linearly orders M and $|M| \ge n$. Show that there is a model $\mathcal{M} = (M, <^{\mathcal{M}})$ of σ , linearly ordered by $<^{\mathcal{M}}$, with distinct elements a_0, a_1, a_2, \ldots such that

$$\ldots <^{\mathcal{M}} a_2 <^{\mathcal{M}} a_1 <^{\mathcal{M}} a_0$$

5 Exercise

Let Σ be a finite consistent set of sentences in a language \mathcal{L} with only finitely many non-logical symbols, including a constant symbol 0 and a unary function symbol S.

- (a) Define what it means for a set $A \subseteq \mathbb{N}$ to be *representable* in Σ .
- (b) If A ⊆ N and B ⊆ N are representable in Σ, does it follow that the difference set A \ B is representable in Σ?