LOGIC COMPREHENSIVE EXAM (MATH 570), AUGUST 2006

There are 5 problems. Each problem is worth 20 points, for a total of 100 points. To receive credit, each of your solutions must be justified.

Convention. In the exercises L will be a language and = is considered a logical symbol. Any model-theoretic structure is by convention non-empty.

1. EXERCISE

Let for each $n \in \mathbb{N}$ a function $f_n : \mathbb{N} \to \mathbb{N}$ be given. Show that there is a function $g : \mathbb{N} \to \mathbb{N}$ such that for each n and all $k \ge n$, $f_n(k) < g(k)$.

2. EXERCISE

Let L be the first order language whose non-logical symbols consist of a constant symbol 0 for the number zero, a unary function symbol S for the successor function, a binary predicate symbol < for the ordering relation, and two binary function symbols + and × for addition and multiplication respectively. Let Σ be any set of sentences in L such that $\Sigma \vdash \sigma$ whenever σ is a quantifier free sentence in L that is true in the standard model of arithmetic ($\mathbb{N}, 0, S, <, +, \times$). Let also Σ contain the sentence

$$\forall x \; \forall y \; \forall z \; (x+y=x+z \to y=z).$$

- Let f : N^k → N be a function. Define what it means for f to be *representable (as a function) in* Σ.
- (2) Define $f: \mathbb{N}^2 \to \mathbb{N}$ by $f(n,m) = \max\{0, n-m\}$. Show that f is representable in Σ .

3. EXERCISE

Let \mathcal{L} be a language with at least one constant symbol. Let $\phi(x)$ be a quantifier free formula. Show that

$$\vdash \exists x \phi$$

if and only if there exist variable free terms t_1, \ldots, t_n such that

$$\vdash \phi(t_1) \lor \cdots \lor \phi(t_n).$$

4. EXERCISE

Let \mathcal{L} be the language consisting of one unary function symbol f. Let $\mathcal{M} = (\mathbb{R}^2, f^{\mathcal{M}})$ be an \mathcal{L} -structure with $f^{\mathcal{M}}(x, y) = (x, 0)$.

- (i) Find a decidable set Σ of \mathcal{L} -sentences that hold in \mathcal{M} and such that any two countable models of Σ are isomorphic. (You can use Church's thesis to prove decidability of Σ .)
- (ii) Show that for a set of \mathcal{L} -sentences Σ as in (i) we have

 $\Sigma \vdash \sigma$ if and only if $\mathcal{M} \models \sigma$.

5. EXERCISE

Let \mathcal{L} be a language consisting of a binary relation symbol < and a unary function symbol f. Let \mathcal{M} be an \mathcal{L} -structure whose underlying set is the set of integers \mathbb{Z} . Let $<^{\mathcal{M}}$ be the usual ordering on \mathbb{Z} , and let $f^{\mathcal{M}}(m) = m + 2$. Is the set of even integers definable in this structure?