LOGIC COMPREHENSIVE EXAM (MATH 570), MAY 2008

There are 5 problems. Each problem is worth 20 points, for a total of 100 points. To receive credit, each of your solutions must be justified.

Convention. In the exercises, L will be a language and = is considered a logical symbol. Any model-theoretic structure is by convention non-empty.

Also, 'total recursive functions' are partial recursive functions that happen to be defined everywhere. Another standard terminology for recursive is 'computable'.

1. EXERCISE

Let $A \subseteq \mathbb{N}^2$ be recursively enumerable and suppose that for every n the section $A_n = \{k \in \mathbb{N} \mid (n,k) \in A\}$ is infinite. Show that there exists an infinite recursively enumerable set $B \subseteq \mathbb{N}$ such that $B \neq A_n$ for all n.

2. EXERCISE

Let L be a language and let $L' = L \cup \{<, f\}$, where < is a new binary relation symbol and f a new unary function symbol.

Let T be the L-theory whose axioms are

$$\exists x_1 \dots \exists x_n \ \bigwedge_{i \neq j} x_i \neq x_j$$

for all n = 1, 2, ...

Let also S be the L'-theory whose axioms are

$$\begin{aligned} \forall x \; \forall y \; (x < y \; \lor \; y < x \; \lor \; x = y), \\ \forall x \; \forall y \; \neg (x < y \; \land \; y < x), \\ \forall x \; \forall y \; \forall z \; (x < y \; \land \; y < z \rightarrow x < z), \\ \forall x \; (x < fx). \end{aligned}$$

Suppose that σ is an L sentence such that $S \vdash_{L'} \sigma$. Show that also $T \vdash_L \sigma$.

3. EXERCISE

Suppose that L has just a unary function symbol f, and let $\mathcal{A} = (A, f)$ be an Lstructure such that f is a permutation of A. Suppose further that there is no positive integer n such that f^n is the identity on A. (Here $f^1 = f$ and $f^{n+1} = f \circ f^n$.) Show that there is a countable L-structure $\mathcal{B} = (B, g)$ that satisfies the same L-sentences as \mathcal{A} and an element $b \in B$ such that $b, g(b), g^2(b), \ldots$ are all distinct.

4. EXERCISE

Let $(\mathbb{Q}, <)$ be the set of all rational numbers equipped with the usual strict linear ordering.

- (i) (7 points) Find all sets A ⊆ Q that are definable (without parameters) in the structure (Q, <).
- (ii) (13 points) Find all binary relations $R \subseteq \mathbb{Q}^2$ that are definable (without parameters) in the structure $(\mathbb{Q}, <)$.

5. EXERCISE

Let $L = \{E\}$, where E is a binary predicate symbol. Let T be the theory in the language L whose models are the structures (A, E) with E an equivalence relation on A such that for every integer $n \ge 1$, there is exactly one equivalence class of cardinality n.

- (i) Indicate an axiomatization of T.
- (ii) How many countable models does T have, up to isomorphism?