LOGIC COMPREHENSIVE EXAM (MATH 570) MAY 2007

There are 5 problems. Each problem is worth 20 points, for a total of 100 points. To receive credit, each of your solutions must be justified.

Convention. In the exercises, L will be a language and = is considered a logical symbol. Any model-theoretic structure is by convention non-empty.

Also, 'total recursive functions' are partial recursive functions that happen to be defined everywhere. Another standard terminology for recursive is 'computable'.

1. EXERCISE

Suppose that E is an equivalence relation on \mathbb{N} which is recursively enumerable as a subset of \mathbb{N}^2 , i.e., for some total recursive functions $f, g: \mathbb{N} \to \mathbb{N}$ we have

$$nEm \Longleftrightarrow \exists k \ \bigl(f(k) = n \ \& \ g(k) = m\bigr).$$

Assume moreover that E has only finitely many classes. Show that E is recursive as a subset of \mathbb{N}^2 .

2. EXERCISE

Let L be the language whose non-logical symbols are: a constant symbol 0, a unary function symbol S, a binary predicate symbol <, and two binary function symbols + and \cdot . Let Σ be a set of sentences in L such that Σ proves any universal sentence in L that is true in the standard model of arithmetic $(\mathbb{N}, 0, S, <, +, \cdot)$, with the usual interpretation of the non-logical symbols of L.

(a) Let A be a subset of \mathbb{N}^k where $k \ge 1$ is an integer. Define what it means for A to be representable in Σ .

(b) Suppose $B \subseteq \mathbb{N}$ is representable in Σ and $A = \{n^2 : n \in B\}$. Show that A is representable in Σ .

3. EXERCISE

Suppose T is a theory in a countable language and that all models of T of cardinality \aleph_1 are pairwise elementarily equivalent. Show that, for all infinite models \mathcal{A} and \mathcal{B} of T, \mathcal{A} and \mathcal{B} are elementarily equivalent.

4. EXERCISE

Suppose Σ is a set of *L*-sentences with the following properties: (a) for any $\sigma, \tau \in \Sigma$, either $\sigma \to \tau$ or $\tau \to \sigma$ is logically valid; (b) for each $\sigma \in \Sigma$, σ has a model. Show that Σ has a model.

5. EXERCISE

Suppose L is a language and T a consistent L-theory with only finitely many logically inequivalent complete extensions $T' \supseteq T$.

Show that there are sentences $\sigma_1, \ldots, \sigma_n$ such that every complete extension $T' \supseteq T$ is equivalent to one of $T \cup \{\sigma_i\}$.