LOGIC COMPREHENSIVE EXAM (MATH 570), MAY 2006

There are 5 problems. Each problem is worth 20 points, for a total of 100 points. To receive credit, each of your solutions must be justified.

In the exercises L will be a language and = is considered a logical symbol. Any modeltheoretic structure is by convention non-empty.

Let \mathcal{M} be an *L*-structure. Recall that a subset A of the underlying set M of \mathcal{M} is **definable in** \mathcal{M} if there exists an *L*-formula $\phi(x)$ such that for any $a \in M$ we have

$$a \in A \Leftrightarrow \mathcal{M} \vDash \phi(a).$$

1. EXERCISE

Assume $f : \mathbb{N} \to \mathbb{N}$ is a total computable function, $g : \mathbb{N} \to \mathbb{N}$ is an injective total computable function, $g[\mathbb{N}]$ is computable, and $g(n) \leq f(n)$ for all $n \in \mathbb{N}$.

Show that also $f[\mathbb{N}]$ is computable.

2. EXERCISE

For an *L*-sentence σ we let $S(\sigma)$ be the set of all positive integers *n* such that σ has a model of cardinality *n*. Find σ in some language *L* such that $S(\sigma) = \{2n \mid n \ge 1\}$.

3. EXERCISE

Let *L* contain a binary relation symbol < and let σ be an *L*-sentence such that for every model \mathcal{M} of σ , the interpretation of < in \mathcal{M} is a well-ordering of the underlying set M of \mathcal{M} . Show that there is a natural number K such that any model of σ has cardinality less than K.

4. EXERCISE

Let L contain the constant symbol 0 and the unary function symbol S.

(i) Let Σ be a set of L-sentences. State what it means for a relation $R \subseteq \mathbb{N}^k$ to be representable in Σ .

(ii) Assume that L contains additionally binary function symbols +, \cdot and a binary relation symbol <. Let $\mathcal{N} = \langle \mathbb{N}, 0^{\mathcal{N}}, S^{\mathcal{N}}, +^{\mathcal{N}}, \cdot^{\mathcal{N}}, <^{\mathcal{N}} \rangle$ be the L-structure in which S is interpreted as the successor function $S^{\mathcal{N}}(x) = x + 1$ and $0, +, \cdot, <$ have their usual interpretations. Show that there is a set $R \subseteq \mathbb{N}$ which is definable in \mathcal{N} , but not representable in Σ for any finite set of sentences Σ that are satisfied in \mathcal{N} .

5. EXERCISE

Let *L* consist of a binary predicate symbol < and a constant symbol 0. Consider the structure $\mathcal{M} = (\mathbb{Q}, <^{\mathcal{M}}, 0^{\mathcal{M}})$ where \mathbb{Q} is the set of all the rational numbers, < is interpreted as the usual ordering of \mathbb{Q} , and 0 is interpreted as the rational number 0. Find all subsets of \mathbb{Q} definable in \mathcal{M} .