LOGIC COMPREHENSIVE EXAM (MATH 570), FEBRUARY 4, 2006

There are 5 problems. Each problem is worth 20 points, for a total of 100 points. To receive credit, each of your solutions must be justified.

1. Problem

Let L be a language. For every formula $\phi\left(x, y_{1}, \ldots, y_{n}\right)$ in the language L, we denote by \exists ! $x \phi$ the formula

$$
\exists x\left(\phi\left(x, y_{1}, \ldots, y_{n}\right) \wedge \forall z\left(\phi\left(z, y_{1}, \ldots, y_{n}\right) \rightarrow x=z\right)\right)
$$

Let now $\theta(x, y)$ be an L-formula with free variables among x, y. Write an L sentence σ that is true in an L-structure \mathcal{M} if and only if there is a unique pair (a, b) of elements of \mathcal{M} such that $\mathcal{M} \models \theta[a, b]$.

Which of the following formulas

$$
\sigma, \quad \exists!x \exists!y \theta(x, y), \quad \exists!y \exists!x \theta(x, y)
$$

are equivalent? Give either a proof or a counter example.

2. Problem

(i) Let $R \subseteq \mathbb{N}$ be infinite. Assume R is the range of a total computable function from \mathbb{N} to \mathbb{N}. Show that there exists a total computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is injective and whose range is R.
(ii) Let $S \subseteq \mathbb{N}$ be the range of a total computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n) \leq f(n+1)$ for all $n \in \mathbb{N}$. Show that S is computable.

3. Problem

Let T be a theory in a language L, and let Φ, Ψ be two sets of L-formulas with free variables among x_{1}, \ldots, x_{n}. Suppose that for any model \mathcal{M} of T and for any elements a_{1}, \ldots, a_{n} of \mathcal{M} we have
$\mathcal{M} \models \phi\left[a_{1}, \ldots, a_{n}\right]$ for all formulas $\phi \in \Phi$ if and only if $\mathcal{M} \models$ $\psi\left[a_{1}, \ldots, a_{n}\right]$ for some formula $\psi \in \Psi$.
Show that there exist finite subsets $\Phi_{0} \subseteq \Phi$ and $\Psi_{0} \subseteq \Psi$ such that

$$
T \models \forall x_{1} \cdots \forall x_{n}\left(\bigwedge \Phi_{0} \leftrightarrow \bigvee \Psi_{0}\right)
$$

4. Problem

Let L be a language consisting of one binary function symbol \cdot. Consider the L-structure $\mathcal{N}=\left(\mathbb{N}, \mathcal{N}^{\mathcal{N}}\right)$ where $\cdot \mathcal{N}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is the usual multiplication. Show that the set $\{2,3\}$ is not definable in this structure.

5. Problem

Let L be a language containing the constant symbol 0 and the unary function symbol S. Let Σ be a set of L-sentences.
(i) Define what it means for a function $F: \mathbb{N}^{k} \rightarrow \mathbb{N}$ to be representable in Σ.
(ii) Assume that the usual addition $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is representable in Σ. Let $F_{1}, F_{2}: \mathbb{N} \rightarrow \mathbb{N}$ be two functions representable in Σ. Show that the function $F_{1}+F_{2}: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
\left(F_{1}+F_{2}\right)(n)=F_{1}(n)+F_{2}(n)
$$

is representable in Σ.

