LOGIC COMPREHENSIVE EXAM (MATH 570), JANUARY 23, 2008

There are 5 problems. Each problem is worth 20 points, for a total of 100 points. To receive credit, each of your solutions must be justified.

Convention. In the exercises, L will be a language and = is considered a logical symbol. Any model-theoretic structure is by convention non-empty.

Another word for 'recursive' is 'computable'.

1. EXERCISE

Let L be the language consisting of a single binary relation symbol E and let Σ be a set of L-sentences stating that E is an equivalence relation with infinitely many classes and all of whose equivalence classes are infinite.

- (a) For which infinite cardinal numbers κ are all models of Σ of cardinality κ isomorphic?
- (b) Is Σ complete?
- (c) Is $\operatorname{Th}(\Sigma)$ decidable?

2. EXERCISE

Let L be the language $\{0, 1, +, \cdot, <\}$ and let \mathcal{N} be the standard model with underlying set \mathbb{N} and the usual interpretations of the symbols.

(a) Show that there is an *L*-structure $\mathcal{M} = \langle M; 0^{\mathcal{M}}, 1^{\mathcal{M}}, +^{\mathcal{M}}, \cdot^{\mathcal{M}} \rangle$ that is elementarily equivalent to \mathcal{N} and has an infinite prime, where an *infinite prime* of \mathcal{M} is an element $p \in M$ such that

$$\mathcal{M} \models S^n 0 < p$$

for all $n \in \mathbb{N}$, and

$$\mathcal{M} \models \forall x \; \forall y \; (x \neq p \; \land \; y \neq p \to x \cdot y \neq p).$$

(b) Can \mathcal{M} be taken to be countable? Of cardinality \aleph_1 ?

3. EXERCISE

Let L be the language $\{<, U\}$, where < is a binary relation symbol and U a unary relation symbol. Indicate an L-sentence σ such that for all sets $X \subseteq \mathbb{R}$,

$$\langle \mathbb{R}, \langle X \rangle \models \sigma \iff X$$
 is infinite.

4. EXERCISE

Let L be a language with only finitely many non-logical symbols.

- (a) Show that for every *L*-sentence σ and every natural number *N*, there is an *L*-sentence τ such that ⊢ σ ↔ τ and such that the Gödel number of τ is greater than *N*.
- (b) Suppose that $f \colon \mathbb{N} \to \mathbb{N}$ is a strictly increasing recursive function, i.e., $m < n \Longrightarrow f(m) < f(n)$. Show that $\operatorname{Im} f$ is a recursive subset of \mathbb{N} .
- (c) Let T be an L-theory with a recursively enumerable axiomatization. Show that T has a recursive axiomatization.

5. EXERCISE

Let L be a language for number theory whose non-logical symbols include a binary relation symbol <, a unary function symbol S and a constant symbol 0. Let Σ be a set of L-sentences.

- (a) Define what it means for a set $R \subseteq \mathbb{N}^2$ to be *representable* in Σ .
- (b) Suppose that the following sentences are provable from Σ :

$$\forall x \ \neg(x < 0),$$

$$\forall x \ (x < S^n 0 \leftrightarrow \bigvee_{0 \le i < n} x = S^i 0),$$

where $n = 1, 2, \ldots$ Suppose also that the binary relation $R \subseteq \mathbb{N}^2$ is representable in Σ , and let

$$U = \{ a \in \mathbb{N} \mid \exists b < a \ (a, b) \in R \}.$$

Show that U is representable in Σ . You should give an explicit formula representing U involving one that represents R and verify that it works.