LOGIC COMPREHENSIVE EXAM (MATH 570), JANUARY 2007

There are 5 problems. Each problem is worth 20 points, for a total of 100 points. To receive credit, each of your solutions must be justified.

Convention. In the exercises \mathcal{L} will be a language and = is considered a logical symbol. Any model-theoretic structure is by convention non-empty.

Also, 'total recursive functions' are partial recursive functions that happen to be defined everywhere. Another standard terminology for recursive is 'computable'.

1. EXERCISE

Prove that there exists a function $f : \mathbb{N} \to \mathbb{N} \setminus \{0\}$ such that for any total recursive function $g : \mathbb{N} \to \mathbb{N}$ we have

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0.$$

2. EXERCISE

Let \mathcal{L} be the language consisting of one binary relation symbol <.

(i) Find two \mathcal{L} -structures \mathcal{M} and \mathcal{N} and an \mathcal{L} -sentence σ such that

- (a) $<^{\mathcal{M}}$ and $<^{\mathcal{N}}$ are strict linear orders and
- (b) \mathcal{M} is a substructure of \mathcal{N} and
- (c) $\mathcal{M} \vDash \sigma$ and $\mathcal{N} \vDash \neg \sigma$.

(ii) Consider the \mathcal{L} -structure $\mathcal{R} = (\mathbb{R}, <^{\mathcal{R}})$ consisting of the reals with the usual strict linear order relation. Let $\mathcal{Q} = (\mathbb{Q}, <^{\mathcal{Q}})$ be the substructure of \mathcal{R} whose underlying set consists of all the rational numbers. Show that for any \mathcal{L} -sentence σ

$$\mathcal{Q} \vDash \sigma$$
 iff $\mathcal{R} \vDash \sigma$.

3. EXERCISE

Suppose that \prec is a strict linear order of \mathbb{N} which is recursively enumerable, i.e., for some total recursive functions $\phi, \psi \colon \mathbb{N} \to \mathbb{N}$ we have

$$n \prec m \iff \exists k \ (\phi(k) = n \& \psi(k) = m).$$

Show that the set $\mathbb{A} = \{(n,m) \in \mathbb{N} \times \mathbb{N} \mid n \prec m\}$ is recursive.

4. EXERCISE

Let $\mathcal{L} = \{\cdot, -1, 1\}$ be the language of groups consisting of a binary function symbol, a unary function symbol, and a constant symbol. Show that there exists no \mathcal{L} -formula $\phi(x, y)$ such that for every group G and $g, h \in G$,

 $G \models \phi(g, h) \iff g$ and h have the same order in G.

(Recall that the order of an element g of a group G is the smallest $n \in \mathbb{N}$, $n \ge 1$, with $g^n = 1$, if such an n exists, and ∞ otherwise.)

5. EXERCISE

Let Σ be a finite consistent set of sentences in a language \mathcal{L} with only finitely many non-logical symbols, including a constant symbol 0 and a unary function symbol *S*.

(i) Define what it means for a relation $R \subseteq \mathbb{N}^k$ to be *representable* in Σ .

(ii) Show that each representable set $R \subseteq \mathbb{N}$ is recursive. It suffices to describe an algorithm for determining whether or not a given $n \in \mathbb{N}$ belongs to R.