Affordable, Adequate and Stable Annuities in Today’s World: Fantasy or Reality?

Servaas van Bilsen
Amsterdam School of Economics
University of Amsterdam

Based on joint work with

Daniel Linders, Roger Laeven, Lans Bovenberg and Theo Nijman

May 16, 2019
Variable Annuity Market

- Annuities have become **unaffordable** (too expensive) or **inadequate** (too low payouts) because of sharp declines in market interest rates.
- Market solution: **variable annuities**.
- A variable annuity is a financial product that packages a **mutual fund** with certain types of **guarantees**.
- Variable annuity market is **big**: 34 percent (or 1.5 trillion) of U.S. life insurance liabilities in 2015 (Koijen and Yogo, 2018).
- Let’s now look at a real-world example of a variable annuity product.
Real-World Example: GLWB offered by MetLife

Accumulation Period

- Premium is invested in a balanced fund (account value).
Real-World Example: GLWB offered by MetLife

Accumulation Period

- Premium is invested in a balanced fund (account value).
- Benefit base steps up to the greater of the account value and the previous benefit base accumulated at 5 percent.
Real-World Example: GLWB offered by MetLife

Withdrawal Period

- Money is still invested in a balanced fund (account value).
- Benefit base is equal to the greater of the account value and the previous benefit base.
- Income from the account is 5 percent of the benefit base.
- Holders receive payments until death.
Are Variable Annuities Attractive?

Perspective from the holder:

- It is hard to reconcile existing annuity products with (behavioral) preference models.
- Voluntary annuitization is low (annuity puzzle).

Perspective from the life insurer:

- Long-term guarantees are difficult to hedge and price.
- Imperfect hedging implies large fluctuations in the mismatch between assets and the variable annuity liabilities.
Outline

1. Introduction

2. A Unit-Linked Annuity with Buffering of Portfolio Shocks

3. Holder’s Perspective

4. Insurer’s Perspective
2. How to Withdraw Your Retirement Wealth?

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>€60</td>
<td>€60</td>
<td>€60</td>
<td>€60</td>
<td>€60</td>
</tr>
</tbody>
</table>

€ 300

Affordable, Adequate and Stable Annuities in Today’s World: Fantasy or Reality?
Risk Analytics Symposium, 2019, Chicago, Illinois
2. One Way to Incorporate a Portfolio Shock

€ 150

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>€ 30</td>
<td>€ 30</td>
<td>€ 30</td>
<td>€ 30</td>
<td>€ 30</td>
</tr>
</tbody>
</table>
2. Another Way to Incorporate a Portfolio Shock

€ 150

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>€ 50</td>
<td>€ 40</td>
<td>€ 30</td>
<td>€ 20</td>
<td>€ 10</td>
</tr>
</tbody>
</table>
2. How Does Buffering of Portfolio Shocks Works? [1/2]

First Portfolio Shock: -40%

![Graph showing actual and expected annuity payouts with and without buffering.](image-url)

Second Portfolio Shock: +20%

No Buffering

Buffering

(c) No Buffering

(d) Buffering
2. Payout Dynamics: Which One Do You Prefer?

No Buffering

Buffering
2. Buffering of Portfolio Shocks: Formal Definition

Some notation:

- $\sigma_{t_j} A_j$: stock return shock between year t_{j-1} and year t_j;
- $q_k \beta_j$: impact of stock return shock $\sigma_{t_j} A_j$ on annuity payout k years from now.

Adjustment mechanism:

\[
\begin{align*}
\log c_{t_1} &= q_1 \cdot \beta_1 \sigma_{t_1} A_1 \\
\log c_{t_2} &= q_2 \cdot \beta_1 \sigma_{t_1} A_1 + q_1 \cdot \beta_2 \sigma_{t_2} A_2 \\
\log c_{t_3} &= q_3 \cdot \beta_1 \sigma_{t_1} A_1 + q_2 \cdot \beta_2 \sigma_{t_2} A_2 + q_1 \cdot \beta_3 \sigma_{t_3} A_3 \\
\log c_{t_4} &= q_4 \cdot \beta_1 \sigma_{t_1} A_1 + q_3 \cdot \beta_2 \sigma_{t_2} A_2 + q_2 \cdot \beta_3 \sigma_{t_3} A_3 + q_1 \cdot \beta_4 \sigma_{t_4} A_4
\end{align*}
\]
2. Buffering of Portfolio Shocks: Features

- **Exogenous allocation rule** $q_k \beta_j$;
- Allocation rule is specified such that current payout is protected: **stable dynamics**;
 - This feature implies that payout stream is *excessively smooth*.
- **Endogenous investment policy**: reverse engineering;
- Average allocation to equities is substantial: **affordable and adequate** annuity product;
- no guarantees.
3. Is Buffering of Shocks Consistent with Preferences?

- Van Bilsen et al. (2019, *JFQA*) show that buffering of shocks is consistent with the ratio habit model;
- Individuals derive utility from the ratio between consumption and a habit level;
- Habit level depends on own past consumption choices;
- The allocation rule should be as follows:

\[
q_k = \frac{1}{\gamma} \left(1 + \frac{\beta}{\alpha - \beta} [1 - \exp\{-{(\alpha - \beta)k}\}]\right).
\]

- \(\gamma\) models risk aversion;
- When \(\beta\) is large, past consumption choices are relatively important;
- When \(\alpha\) is small, the log habit level exhibits a high degree of memory.
3. Different Allocation Rules

![Graph showing different allocation rules and their impact on sensitivity of future consumption to a shock over time.]
3. Other Preferences

Our annuity contract is also consistent with:

- standard constant relative risk aversion utility (CRRA);
- the difference model of habit formation;
- preferences incorporating a reference point and loss aversion (see Van Bilsen et al. (2019, MS)).
4. Long-Term Options [1/2]

- Variable annuities packages a mutual fund with guarantees;
- Payout profile is equivalent to the payoff of long-term options;
- Long-term options are difficult to hedge and price.
4. Long-Term Options [2/2]

Pricing:
- No problem if type of uncertainty is known;
- It becomes problematic when we have no clue about the distribution of future states of nature.

Hedging:
- Payout profile exhibits kinks;
- Difficult to hedge in discrete time.
4. Hedging and Pricing in Our Contract

Pricing:
- Arbitrage-free price is (quite) insensitive to stock return distribution!
- Intuition: Contract is a mutual fund with smooths out shocks.

Hedging:
- Payout profile is a smooth function of current and past shocks;
- Hedging is easier in discrete time.
References

Thank you for your attention!