MATH 530 - Comprehensive Examination, August 2019

Instructions: Do any four of the following five problems. Indicate which problem you have omitted.

Here is a theorem that you may wish to quote in your solutions:
Minkowski's bound: Let K / \mathbb{Q} be a finite extension of the rational numbers with degree n and let O_{K} be the set of algebraic integers in K and Δ the discriminant of O_{K} over the integers. Assume K has r embeddings into the real numbers and $2 s$ embeddings into the complex numbers. Then every class of fractional ideals contains an ideal I in O_{K} that satisfies

$$
\left|N_{K / \mathbb{Q}}(I)\right| \leq \frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s}|\Delta|^{1 / 2} .
$$

1. Let $K=\mathbb{Q}(\sqrt{-51})$.
a) Give the ring of integers R of K.
b) Give the decompsition of the ideals $2 R$ and $3 R$ as products of prime ideals in R.
c) Determine the structure of the ideal class group of R.
2. Let $K=\mathbb{Q}(\sqrt{3}, \sqrt{7}, \sqrt{11})$ and let R be the ring of integers of K.
a) For a prime P of R that divides the rational prime p define the decomposition field and the inertia field.
b) Find the decomposition field and the inertia field associated to a prime $P \mid 5$.
c) Find the decomposition field and the inertia field associated to a prime $P \mid 3$.
3. Let K be a number field with ring of integers R.
a) State Dirichlet's Unit Theorem for the structure of the unit group E_{K} of R.
b) In b), c), d) let $K=\mathbb{Q}(\sqrt{-3}, \sqrt{-5})$.

Determine the minimal m such that $K \subset \mathbb{Q}\left(\omega_{m}\right)$, for $\omega=e^{2 \pi i / m}$.
c) Describe the structure of E_{K} as an abstract group.
d) Explicitly find a subgroup of finite index for E_{K}.
4. Prove that for a number field K with ring of integers R, every nonzero prime ideal of R is a maximal ideal.
(Hint: Show that for every nonzero ideal I there exists nonzero $m \in \mathbb{Z}$ such that $m R \subset I \subset R$ and use that R is a free \mathbb{Z}-module of finite rank.)
5. Let f be the polynomial $x^{4}+2 x^{2}+2 \in \mathbb{Q}[x]$.
a) Show that f is irreducible over \mathbb{Q}.
b) Find the degree of each irreducible factor of f in the polynomial ring $\mathbb{Q}_{5}[X]$. Here \mathbb{Q}_{5} denotes the complete field of 5 -adic numbers.

