The Rise of Peer-to-Peer Insurance and Its Mathematical Modeling

Runhuan Feng, PhD, FSA, CERA
University of Illinois at Urbana-Champaign

Joint work with S. Abdikerimova and C. Liu
Decentralization / disintermediation
Collaborative Economy Honeycomb Version 1.0

The Collaborative Economy enables people to efficiently get what they need from each other. Similarly, in nature, honeycombs are resilient structures that efficiently enable many individuals to access, share, and grow resources among a common group.

In this visual representation, this economy is organized into discrete families, sub-classes, and example companies. To access the full directory of 9000+ companies visit the Mesh Index, at meshing.it/companies managed by Mesh Labs.

By Jeremiah Owyang
@Jowyang

With input from:
Neal Gorenflo (@gorenflo),
Lisa Gansky (@Instinctig),
Shervin Pishevar (@sherpa),
Mike Walsh (@mwalsh),
Brian Solis (@briansolis),
Alexandra Samuel (@awsamuel), and Vision Critical (@VisionCritical).

Design by Vladimir Mirkovic www.transartdesign.com
May 2014. Creative Commons license: Attribution-NonCommercial.
Product Sharing

Service Sharing
Product Sharing

Service Sharing

Risk Sharing
Innovations in Insurance

Source: Institute of International Finance
Peer-to-Peer Insurance

- A network of participants pool resources together to compensate each other for financial losses
- Revival of a centuries-old practice with modern adaptation
- Bring trust back to insurance – “law of small number”
- Transparent charging structure
- Reduction in regulatory cost
- Disintermediation allows new responsiveness to consumer needs
Quarterly Global Insurtech Funding

Millions

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>783</td>
<td>398</td>
<td>233</td>
<td>271</td>
<td>292</td>
<td>312</td>
<td>624</td>
<td>724</td>
<td>1,258</td>
</tr>
<tr>
<td>2017</td>
<td>992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Willis Towers Watson, 2018
Lemonade keeps a flat 25% fee of a customer's premium while setting aside the remaining 75% to pay claims and purchase reinsurance.

Unclaimed premiums go to a nonprofit of the user's choosing in an annual "Giveback."

Broker model: a portion of premium goes to a mutual pool and the remainder goes to an insurer.
Lemonade

Get insurance in 90 seconds with Lemonade's app
Lemonade keeps a flat 20% fee of a customer’s premium while setting aside the remaining 80% to pay claims and purchase reinsurance.

Unclaimed premiums go to a nonprofit of the user’s choosing in an annual “Giveback.”

Carrier model: offer actual coverage directly to consumers.
Artificial intelligence: Chatbots

Machine learning
 - Insurance application
 - Claim processing (review claims, cross-reference, fraud detection, approval)
- Shari’ah compliant alternative to insurance
- Each contributes to the tabarru fund.
- When a participant makes a claim, the payment is made out of the tabarru fund.
Majority in healthcare

Commercial health insurance considered too expensive

Gap in coverage create an opportunity for startups

No funding pool

Payment in arrears

As little as 20-50 Yuan per month for a coverage of 100,000-300,000 Yuan.
- Difficulty with gaining credibility?
 - Financing backing of China’s largest tech firms (Alibaba, Tencent, DiDi)
- Crowdfunding converts well educated about risks
- Regulation
 - Heavily regulated conventional insurance
 - Grey area

Online Mutual Aid（网络互助）

![Graph showing number of participants on China's Mutual Aid Platforms]

- Xiang Hu Bao: 18,725,631
- Shuidi Mutual Aid: 86,132,627, 80,531,871
- All in China: 258,179,164
- Classic mutual insurance
- Self-managed pooled fund
Modern insurance
Insurance as an intermediate
Advantage:
- Standardized contract
- Professionalized service
- Fixed premium & fixed benefit (by law of large numbers)
- Insurer absorbs residual risk
- Peer-to-peer insurance
- Decentralized organization
- Advantage:
 - Standardized contract
 - Transparency
 - Low administrative cost
primitive -> centralized -> decentralized

Benevolent society -> Mutual insurance -> P2P insurance
WHAT IS MULTI-RISK CROWD INSURANCE?

A group of individuals pool money together to insure against unique risks they have in mind.
Quantitative Principle of Peer-to-Peer Insurance

1. Pooled funding
 ▶ Pool premium funds with known acquaintances
 ▶ Remaining funds are refunded to its members

2. Mutual aid
 ▶ Largely based on crowdfunding model
 ▶ Charges are made after claims are made
○ Adverse selection
○ Differential pricing
○ Two common methods
 ○ Equal cost sharing and differential benefit
 ○ Equal benefit and differential cost sharing

Online Mutual Aid (网络互助)

<table>
<thead>
<tr>
<th>保障111种重大疾病和77种特定疾病</th>
<th>最高可获50万元</th>
</tr>
</thead>
<tbody>
<tr>
<td>会员年龄</td>
<td>0–25周岁</td>
</tr>
<tr>
<td>2016年</td>
<td>0</td>
</tr>
<tr>
<td>2017年</td>
<td>2.39</td>
</tr>
<tr>
<td>2018年</td>
<td>6.42</td>
</tr>
<tr>
<td>2019年</td>
<td>6.80</td>
</tr>
<tr>
<td>累计分摊(元)</td>
<td>15.61</td>
</tr>
</tbody>
</table>
Modeling of existing business model for mutual aid

- Each claimant receives a monetary unit.
- Let l_j be the indicator of the j-th participant’s survival over each period without any loss, p_j be the probability of survival and q_j be the probability of loss, i.e. $p_j = \mathbb{P}(l_j = 1)$, and $q_j = 1 - p_j$
- $w_j > 0$ be the weight for his/her cost sharing.
- Assume that loss distributions of all participants are independent of each other.
Consider the j-th individual’s benefit should he/she suffer a loss. Clearly, the individual can receive the specified mutual aid as long as at least one participant other than him/her is still alive. Therefore, his/her benefit can be written as

$$1 - \prod_{k=j, k=1}^{n} (1 - l_k).$$
Existing business model

If the j-th participant survives the period without any loss, then he/she is obligated to share the cost of mutual aids for other claimants. The total amount of payment can be represented as

$$\frac{w_j \sum_{k=1,k\neq j}^n (1 - l_k)}{w_j + \sum_{k=1,k\neq j}^n w_k l_k}.$$
A mutual aid plan is considered fair if the expected value of income (benefit) is equal to the expected value of outgo (cost). Therefore,

\[p_j \mathbb{E} \left[\frac{w_j \sum_{k=1, k \neq j}^n (1 - l_k)}{w_j + \sum_{k=1, k \neq j}^n w_k l_k} \right] = q_j \left(1 - \prod_{k=1, k \neq j}^n q_k \right). \quad (1) \]

The equation is not true except for a homogeneous group.
We can show that the mutual aid plan with equal distribution of cost is fair for a homogeneous group. When \(p_1 = \cdots = p_n = p \) and \(w_1 = \cdots = w_n \), then (1) holds true for all \(j = 1, \ldots, n \). Let \(M = \sum_{k=1, k\neq j}^{n} I_k \). Observe that \(M \) has a binomial distribution with parameters \(n - 1 \) and \(p \). Then, the left-hand side of (1) can be written as

\[
\mathbb{E}\left[\frac{(n - 1) - M}{M + 1} \right] = p \sum_{z=0}^{n-2} \frac{(n - 1) - z}{z + 1} \binom{n - 1}{p} p^z q^{n-1-z}
\]

\[
= q \sum_{k=1}^{n-1} \frac{(n - 1)!}{z!(n - 1 - z)!} p^z q^{n-1-z} = q[1 - q^{n-1}],
\]

which matches the right-hand side of (1).
Pooled Funding Model – Survivor-to-All Plan

- Consider a case where \(n \) individuals with different risks, each contributing the premium of 1 to a common fund.
- The interest rate is zero.
- Should an individual survive without any loss, his/her premium would be used to cover loss from others.
- Design a re-distribution algorithm in a fair manner.
Quantitative Principle of Crowd Insurance

- (Equivalence Principle) For each individual

\[\text{EPV of outgoes} = \text{EPV of incomes}. \]

- Let \(p_i \) be the probability that the \(i \)-th individual survives in a year without any loss and \(\alpha_{ij} \) be the portion of the \(i \)-th individual’s premium transferred to the \(j \)-th individual should the \(i \)-th individual survive without any loss. Then it is considered fair to the \(i \)-th individual that

\[\alpha_1 p_1 + \alpha_2 p_2 + \cdots + \alpha_n p_n = p_i, \]

where

1. \(0 \leq \alpha_{ij} \leq 1 \) for \(j \neq i, j = 1, 2, \ldots, n \)
2. \(\sum_{j=1}^{n} \alpha_{ij} = 1 \) for all \(j = 1, 2, \ldots, n \).
Crowd Insurance

- Let p_i be the probability that the i-th individual survives in a year without any loss and α_{ij} be the portion of the i-th individual’s premium transferred to the j-th individual should the i-th individual survive without any loss. Then it is fair to the i-th individual that

$$\alpha_1 p_1 + \alpha_2 p_2 + \cdots + \alpha_n p_n = p_i,$$

- Note that, if one multiplies (p_1, \cdots, p_n) by a constant, the equation still holds for all $i = 1, \cdots, n$. Therefore, we can normalize the vector $p = (p_1, \cdots, p_n)$ so that $\sum_{i=1}^{n} p_i = 1.$
Connection to Markov chain

Given an n-dimensional row vector p, find a transition probability matrix A such that

The vector p can be interpreted as the stationary distribution of the discrete-time Markov chain with the given transition probability matrix.
Special cases

1. The trivial case is when $\mathbf{A} = \mathbf{I}$ the identity matrix. It implies that everyone’s own premium is returned when he/she survives without any loss. There is no exchange of cash flows. Nobody receives any survivor credit from others in this case.

2. If we specify that the portion α_{ij} is same regardless of who survives. Then $\alpha_{ij} = \alpha_j$ for all $i = 1, \ldots, n$ and the equivalence principle reduces to

$$
\alpha_i \sum_{j=1}^{n} p_j = p_i.
$$

Therefore,

$$
\alpha_i = \frac{p_i}{\sum p_j}.
$$
Objective: minimized fluctuation

- We can show that the solution always exists but is not unique under the equivalence principle only.
- Consider the i-th claimant’s net return.

\[R_i = \sum_{j \neq i} \alpha_{ji} l_j, \quad \text{where } l_j = \begin{cases} 1, & \text{if no loss occurs} \\ 0, & \text{otherwise} \end{cases}. \]

- We are interested in a distribution algorithm for crowd insurance that minimizes

\[\sum_{i=1}^{n} \text{Var}(R_i), \]

under the constraint of individual fairness.
Alternative objective

- Mean-variance optimization algorithm for crowd insurance without the equivalence principle.
- The algorithm aims to minimize

\[
\sum_{i=1}^{n} \text{Var}(R_i) - \mu \sum_{i=1}^{n} \text{E}(R_i).
\]

- Analytical solution: when \(n \) is small,

\[
\alpha_{ji} = \begin{cases}
\frac{\mu}{2q_j}, & j \neq i \\
1 - (n - 1)\frac{\mu}{2q_i}, & j = i
\end{cases}
\]
For \(n = 2 \), assume that \(q_1 \neq q_2 \). Then solution to the optimization problem is given by

1. \(\mu \leq \min\{2q_1, 2q_2\} \):
 \[
 \alpha_{11} = 1 - \frac{\mu}{2q_1}, \quad \alpha_{12} = \frac{\mu}{2q_1}, \quad \alpha_{21} = \frac{\mu}{2q_2}, \quad \alpha_{22} = 1 - \frac{\mu}{2q_2};
 \]

2. if \(q_2 > q_1 \) and \(2q_1 < \mu < 2q_2 \):
 \[
 \alpha_{11} = 0, \quad \alpha_{12} = 1, \quad \alpha_{21} = \frac{\mu}{2q_2}, \quad \alpha_{22} = 1 - \frac{\mu}{2q_2};
 \]

3. if \(q_1 > q_2 \) and \(2q_2 < \mu < 2q_1 \):
 \[
 \alpha_{11} = 1 - \frac{\mu}{2q_1}, \quad \alpha_{12} = \frac{\mu}{2q_1}, \quad \alpha_{21} = 1, \quad \alpha_{22} = 0;
 \]

4. \(\mu \geq \max\{2q_1, 2q_2\} \):
 \[
 \alpha_{11} = 0, \quad \alpha_{12} = 1, \quad \alpha_{21} = 1, \quad \alpha_{22} = 0.
 \]
Survivor-to-Claimant Model

In this case, a survivor gives away part of his/her wealth to each participant who suffers a loss. A claimant would only receive transfers from survivors. Mathematically, we can represent the j-th participant’s financial return net of his/her initial deposit by

$$R_j = \begin{cases}
\sum_{i \neq j}^n s_i \alpha_{ij} l_i, & \text{if } j\text{-th participant makes a claim;} \\
-s_j \sum_{i \neq j}^n \alpha_{ji} (1 - l_i), & \text{otherwise.}
\end{cases}$$
Survivor-to-Claimant Model

A payment plan is said to be fair to the \(j\)-th individual if the expected value of net return is zero, i.e. \(\mathbb{E}[R_j] = 0\). It is easy to show that the individual fairness condition can be rewritten as

\[
\sum_{i=1}^{n} s_{i\alpha_{ij}} p_{ij} q_j = \sum_{i=1}^{n} s_{j\alpha_{ji}} p_{ji} q_i.
\]

The individual fairness equation has a simple interpretation. On the left-hand side, the factor \(s_{i\alpha_{ij}}\) is the potential amount to be transferred from the \(i\)-th participant to the \(j\)-th participant, which is only materialized when \(i\) survives without any loss and \(j\) incurs a loss. The equation indicates that the expected value of the \(j\)-th participant’s incomes should be equal to the expected value of his/her outgoes.
Technical details can be found in our papers.

Thank you very much for your attention!