Math 540 Comprehensive Examination, August 2019

Solve five of the following six. Each problem is worth 20 points.

The Lebesgue measure is denoted by m, and $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$.

1. Let $E \subset \mathbb{R}$ be Lebesgue measurable. Define

$$f(x) = \operatorname{dist}(x, E) = \inf\{|x - e| : e \in E\}.$$

Prove that

$$\lim_{r \to 0} \frac{f(x+r)}{r} = 0 \quad \text{for } m \text{ a.e. } x \in \mathbb{R}.$$

2. Consider the sequence of functions

$$f_n : \mathbb{R} \to \mathbb{R}, \quad f_n(x) := \frac{n}{1 + n^4 x^2}, \quad x \in \mathbb{R}.$$

- (i) Does this sequence converge to zero almost uniformly on \mathbb{R} ?
- (ii) Determine all $p \in [1, \infty]$ for which the sequence converge to zero in $L^p(\mathbb{R}, m)$.

3. Let $f \in L^{\infty}(\mu)$ where μ is a finite measure. Suppose that $||f||_{\infty} > 0$. Does

$$\lim_{p \to \infty} \frac{\|f\|_{p+1}^{p+1}}{\|f\|_{p}^{p}}$$

exist? If it does, find the limit and verify your answer. Otherwise give a counterexample.

4. Evaluate the following limit for a = 0 and for a > 0

$$\lim_{n \to \infty} \int_a^\infty \frac{n^2 x}{1+x^2} e^{-n^2 x^2} dx$$

5. (i) Show that $g(x) = \frac{\sin x}{x}$ is not Lebesgue integrable on $([0, \infty), m)$. (ii) Employ the identity

$$\frac{1}{x} = \int_0^\infty e^{-xt} dt \quad (x > 0)$$

to evaluate the improper Riemann integral

$$\int_0^\infty \frac{\sin x}{x} \, dx = \lim_{L \to \infty} \int_0^L \frac{\sin x}{x} \, dx.$$

6. For any functions $f, g \in C(\mathbb{T})$ prove that

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)g(nt) \, \mathrm{d}t = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \, \mathrm{d}t\right) \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} g(t) \, \mathrm{d}t\right).$$

Here the limit is taken over $n \in \mathbb{N}$.