Graph Coloring and Machine Proofs in Computer Science, 1977-2017

Andrew W. Appel
Princeton University
Can it really be a proof if you can’t check it by machine?
Alfred B. Kempe, 1849-1922
Barrister of ecclesiastical law; mathematician

In 1876, Kempe’s Universality Theorem: for an arbitrary algebraic plane curve, a linkage can be constructed that draws the curve.

Oops! There was a bug in the proof.

Finally proved in 2002 by Michael Kapovich and John J. Millson
In 1879, proof of the 4-color theorem: every planar graph can be colored using at most 4 colors.

(Any nodes connected by an edge must have different colors.)
Alfred B. Kempe 1879

6-color theorem:
Every planar graph is 6-colorable. ✓

5-color theorem:
Every planar graph is 5-colorable. ✓

4-color theorem:
Every planar graph is 4-colorable. ✗

Percy J. Heawood found a bug in the proof, 1890
6-color theorem:
Every planar graph is 6-colorable.

Proof:
1. Every planar graph has at least one node of degree <6

(by Euler’s polyhedron formula): \(V - E + F = 2 \), average degree < 6

2. If you remove one node from a planar graph, what remains is a planar graph.
3. This leads to an algorithm for coloring graphs . . .
Kempe’s graph-coloring algorithm

To 6-color a planar graph:

1. Every planar graph has at least one vertex of degree ≤ 5.
2. Remove this vertex.
3. Color the rest of the graph with a recursive call to Kempe’s algorithm.
4. Put the vertex back. It is adjacent to at most 5 vertices, which use up at most 5 colors from your “palette.” Use the 6^{th} color for this vertex.
Example: 6-color this graph
Example: 6-color this graph

This node has degree < 6; remove it!
Example: 6-color this graph

Now, by induction, suppose we could color the rest of the graph
Now, color the residual graph

Now, by induction, suppose we could color the rest of the graph

We can surely find a color for c

Find a color for this node that’s not already used in an adjacent node
Put back the node c, and color it

Why did this work?
Because when we removed each node, at that time it had degree < 6.
So when we put it back, it’s adjacent to at most 5 already-colored nodes.
Kempe’s 4-coloring algorithm

To 4-color a planar graph:

1. Find a vertex of degree \(\leq 5 \) (there must be one)
2. Remove this vertex.
3. Color the rest of the graph with a recursive call to Kempe’s algorithm.
4. Put the vertex back.

These cases: easy; you can find a color not used by an adjacent node.

This case: use the method of “Kempe chains”

This case …
Kempe chains

Suppose you are 4-coloring this graph:
Kempe’s 4-coloring algorithm

To 4-color a planar graph:

1. Find a vertex of degree \(\leq 5 \) (there must be one)
2. Remove this vertex.
3. Color the rest of the graph with a recursive call to Kempe’s algorithm.
4. Put the vertex back.

These cases: easy

This case: use “Kempe chains”

This case: use “simultaneous Kempe chains”
Kempe’s 4-coloring algorithm

To 4-color a planar graph:
1. Find a vertex of degree \(\leq 5 \) (there must be one)
2. Remove this vertex.
3. Color the rest of the graph with a recursive call to Kempe’s algorithm.
4. Put the vertex back.

These cases: easy

This case: use “Kempe chains”

“simultaneous Kempe chains”
Every planar graph contains at least 1 of these configurations:

“reduce”: Replace that configuration with a smaller config., color the remaining graph, put the node back, you can find a color for the node!

Kempe 1879
Unavoidable sets

\[S_0 = \{ V_2, V_3, V_4, V_5 \} \quad \text{Kempe 1879} \]
\[S_1 = \{ V_2, V_3, V_4, \ star \star \ star, \ star \ star \ star \} \quad \text{Wernicke 1904} \]
\[S_2 = \{ V_2, V_3, V_4, \ star \star \ star, \ star \ star \ star \ star \ star, \ star \ star \ star \ star \ star \} \quad \text{Franklin 1922} \]
\[S_3 = \{ V_2, V_3, V_4, \ star \star \ star, \ star \ star \ star \ star \ star, \ star \ star \ star \ star \ star \} \quad \text{Lebesgue 1940} \]
\[S_4 = \{ V_2, V_3, V_4, V_5, V_6, V_7, 20 \text{ reducible config.} \} \quad \text{Heesch 1969} \]
\[S_5 = \{ \text{reducible configurations and about 8000 "2-positive" configurations} \} \quad \text{(private communication) Heesch 1970} \]

Table 1. Some finite, unavoidable sets of configurations
4-color thm

Every planar graph contains at least 1 of these configurations:

- "reduce": Replace that configuration with a smaller config., color the remaining graph, put the node back, you can find a color for the node!

~1970: [paraphrase]
I estimate that computers will be powerful enough someday, to find an unavoidable set of perhaps 10,000 reducible configurations

"unavoidable set"

of "reducible configurations"

would prove the 4-color theorem
1972-1974: Let’s use computers to analyze unavoidable sets, and estimate, (1) how many configurations might be in an unavoidable set of reducible configurations? (2) in what year will future computers be fast enough to calculate this?
THE EXISTENCE OF UNAVOIDABLE SETS OF GEOGRAPHICALLY GOOD CONFIGURATIONS

BY

K. APPEL AND W. HAKEN

Abstract

A set of configurations is unavoidable if every planar map contains at least one element of the set. A configuration \mathcal{C} is called geographically good if whenever a member country M of \mathcal{C} has any three neighbors N_1, N_2, N_3 which are not members of \mathcal{C} then N_1, N_2, N_3 are consecutive (in some order) about M.

The main result is a constructive proof that there exist finite unavoidable sets of geographically good configurations. This result is the first step in an investigation of an approach towards the Four Color Conjecture.

Received December 20, 1974.
1974: and the estimate is,

(1) about 2000 configurations

(2) in the year 1972!
1974-1976: Calculate

(1) an unavoidable set of 1900 configs
(using a version of Heesch’s “discharging” procedure)

(2) reducibility proofs for each config.,
using various reducibility algorithms
(implemented with the assistance of C.S. PhD student John Koch)
Teletype model ASR-33

110 bits per second
Mathematical Games
6-color thm

Every planar graph contains at least 1 of these configurations:

- (degree 4)
- (degree 1)
- (a degree 5 node)

“reduce”: Replace that configuration with a smaller config., color the remaining graph, put the node back, you can find a color for the node!

Kempe 1879

5-color thm

Every planar graph contains at least 1 of these configurations:

“reduce”: Replace that configuration with a smaller config., color the remaining graph, put the node back, you can find a color for the node!

Kempe 1879

4-color thm

Every planar graph contains at least 1 of these configurations:

“reduce”: Replace that configuration with a smaller config., color the remaining graph, put the node back, you can find a color for the node!

Appel and Haken 1976

(and 1900 more)
Math department postage meter
July 22, 1976
My own contribution to the 4CT proofreading: None.

“[with] five of their children … Dorothea and Armin Haken, and Laurel, Peter, and Andrew Appel, they set to work [proofreading configurations from computer printouts]”

Robin Wilson, 2002
“Haken’s son Armin, by then a graduate student at ... Berkeley, gave a lecture on the four-colour problem.... At the end, the audience split into two groups: the over-forties could not be convinced that a proof by computer was correct, while the under-forties could not be convinced that a proof containing 700 pages of hand calculations could be correct.”
One history

1850 Guthrie
1880 Kempe
1904 Heawood
1920 Birkhoff
1960 Heesch
1976 Appel, Haken
1996 Robertson, Sanders, Seymour, Thomas
2006 Gonthier

“unavoidable set”
“reducible”
“discharging” to compute unavoidable set
“Every planar map is 4-colorable”
improved proof, same basic recipe
One history

<table>
<thead>
<tr>
<th>Year</th>
<th>Mathematician</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850</td>
<td>Guthrie</td>
</tr>
<tr>
<td>1880</td>
<td>Kempe</td>
</tr>
<tr>
<td>1904</td>
<td>Heawood</td>
</tr>
<tr>
<td>1920</td>
<td>Birkhoff</td>
</tr>
<tr>
<td>1960</td>
<td>Wernicke</td>
</tr>
<tr>
<td>1976</td>
<td>Appel, Haken</td>
</tr>
<tr>
<td>1996</td>
<td>Robertson, Sanders, Seymour, Thomas</td>
</tr>
<tr>
<td>2006</td>
<td>Gonthier</td>
</tr>
</tbody>
</table>

Another history

<table>
<thead>
<tr>
<th>Year</th>
<th>Mathematician</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>Leibniz</td>
</tr>
<tr>
<td>1850</td>
<td>Babbage</td>
</tr>
<tr>
<td>1920</td>
<td>Hilbert</td>
</tr>
<tr>
<td>1930</td>
<td>Gödel, Turing</td>
</tr>
</tbody>
</table>

Can we mechanize mathematics?
Proof checking: yes
Proving: not quite

In particular, a short theorem statement might have a very long proof.

Yes, we noticed!
<table>
<thead>
<tr>
<th>Year</th>
<th>Event/Name</th>
<th>Year</th>
<th>Event/Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850</td>
<td>Guthrie</td>
<td>1700</td>
<td>Leibniz</td>
</tr>
<tr>
<td>1880</td>
<td>Kempe</td>
<td>1850</td>
<td>Babbage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1920</td>
<td>Hilbert</td>
</tr>
<tr>
<td>1904</td>
<td>Heawood</td>
<td>1930</td>
<td>Gödel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Turing</td>
</tr>
<tr>
<td>1920</td>
<td>Birkhoff</td>
<td>1950</td>
<td>von Neumann</td>
</tr>
<tr>
<td>1960</td>
<td></td>
<td>1960</td>
<td>IBM</td>
</tr>
<tr>
<td>1960</td>
<td>Heesch</td>
<td>1976</td>
<td>Appel, Haken</td>
</tr>
<tr>
<td>1996</td>
<td>Robertson, Sanders,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seymour, Thomas</td>
<td>2006</td>
<td>Gonthier</td>
</tr>
<tr>
<td>Year</td>
<td>Name</td>
<td>Year</td>
<td>Name</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>1850</td>
<td>Guthrie</td>
<td>1700</td>
<td>Leibniz</td>
</tr>
<tr>
<td>1880</td>
<td>Kempe</td>
<td>1850</td>
<td>Babbage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1920</td>
<td>Hilbert</td>
</tr>
<tr>
<td>1904</td>
<td>Heawood</td>
<td>1930</td>
<td>Gödel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1950</td>
<td>von Neumann</td>
</tr>
<tr>
<td>1920</td>
<td>Birkhoff</td>
<td>1960</td>
<td>IBM</td>
</tr>
<tr>
<td>1960</td>
<td>Heesch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>Appel, Haken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Robertson, Sanders, Seymour,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thomas</td>
<td>2006</td>
<td>Gonthier</td>
</tr>
</tbody>
</table>

Can we mechanize mathematics?
Proof checking: yes
Proving: not quite
Let’s build those computers!
Optimizing compilers
Proof Assistants
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guthrie</td>
<td>Kempe</td>
<td>Heawood</td>
<td>Birkhoff</td>
<td>Wernicke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1700</td>
<td>1850</td>
<td>1920</td>
<td>1930</td>
<td>1950</td>
<td>1960</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leibniz</td>
<td>Babbage</td>
<td>Hilbert</td>
<td>Gödel</td>
<td>von Neumann</td>
<td>IBM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One history

Another history

John Cocke 1925-2002
IBM Research
Procedure P (k, j)

\[
\begin{align*}
g &:= \text{mem}[j+12] \\
h &:= k-1 \\
f &:= g \times h \\
e &:= \text{mem}[j+8] \\
m &:= \text{mem}[j+16] \\
b &:= \text{mem}[f] \\
c &:= e+8 \\
d &:= c \\
k &:= m+4 \\
j &:= b \\
\end{align*}
\]

return (d, k, j)
1850 Guthrie
1880 Kempe
1904 Heawood
1920 Wernicke
1960 Birkhoff
1976 Heesch
1996 Appel
2006 Kempe

1700 Leibniz
1850 Babbage
1920 Hilbert
1930 Gödel
1950 von Neumann
1960 IBM
1977: Hmm, this 4-color theorem is interesting. John, ask Gregory to try Kempe’s coloring algorithm in the register allocator of our compiler.

Ashok Chandra (1948-2014)
Gregory Chaitin (1947-)

John Cocke 1925-2002
IBM Research
I was recruited to do a coloring register allocator by John Cocke, IBM's greatest computer architect, who needed it for his RISC project. He mentioned that Ashok K. Chandra, also at IBM Research at that time, had suggested recursively reducing the graph by eliminating vertices of degree less than the number of available colors, as just one possible component of a coloring algorithm.

Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins and Peter W. Markstein
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.

(Received 9 October 1980)

Abstract—Register allocation may be viewed as a graph coloring problem. Each node in the graph stands for a computed quantity that resides in a machine register, and two nodes are connected by an edge if the quantities interfere with each other, that is, if they are simultaneously live at some point in the object program. This approach, though mentioned in the literature, was never implemented before. Preliminary results of an experimental implementation in a PL/I optimizing compiler suggest that global register allocation approaching that of hand-coded assembly language may be attainable.
Register Allocation

Chaitin et al. 1981

Procedure P (k, j)

\[g := \text{mem}[j+12] \]
\[h := k-1 \]
\[f := g \times h \]
\[e := \text{mem} [j+8] \]
\[m := \text{mem}[j+16] \]
\[b := \text{mem}[f] \]
\[c := e + 8 \]
\[d := c \]
\[k := m + 4 \]
\[j := b \]
return (d, k, j)

Live ranges

Interferences
(some not shown)

Interference Graph

figure 11.1 from Modern Compiler Implementation in ML, Andrew W. Appel, Cambridge University Press 1998
Heuristic hack of Kempe’s algorithm

To **mostly K-color** a graph (whether planar or not!)

Is there a vertex of degree < K ?
If so:
 Remove this vertex.
 Color the rest of the graph with a recursive call to the algorithm.
 Put the vertex back. It is adjacent to at most K-1 vertices. They use (among them) at most K-1 colors. That leaves one of your colors for this vertex.

If not:
 Remove this vertex.
 Color the rest of the graph with a recursive call.
 Put the vertex back. It is adjacent to ≥ K vertices. How many colors do these vertices use among them?
 If < K: there is an unused color to use for this vertex
 If ≥ K:
To *mostly K-color* a graph (whether planar or not!)

Is there a vertex of degree < K ?
If so:
 Remove this vertex.
 Color the rest of the graph with a recursive call to the algorithm.
 Put the vertex back. It is adjacent to at most K-1 vertices (among them) at most K-1 colors. That leaves one of your colors for this vertex.
If not:
 Remove this vertex.
 Color the rest of the graph with a recursive call.
 Put the vertex back. It is adjacent to ≥ K vertices. How many colors do these vertices use among them?
 If < K : there is an unused color to use for this vertex
 If ≥ K: leave this vertex uncolored.

What?
Are we allowed to do that?
Yes!
This is an algorithm to "mostly K-color" a graph.
Example: 3-color this graph

Stack:
Example: 3-color this graph

Stack:

This node has degree < 3; remove it!
Example: 3-color this graph

Stack: c

Push node c on the stack
Example: 3-color this graph

Removing c lowers the degree of nodes b and m; that will be helpful later!

Stack: c
Example: 3-color this graph

Stack: c
Example: 3-color this graph

This node has degree < 3; remove it!

Stack: h c
Example: 3-color this graph

This node has degree < 3; remove it!

Stack: h c
Example: 3-color this graph

No node has degree < 3

Pick a node arbitrarily, remove it, and push it on the stack

Stack: g h c
Example: 3-color this graph

Stack: k g h c
Example: 3-color this graph

Stack: k g h c

This node has degree < 3; remove it!
Example: 3-color this graph

This node has degree < 3; remove it!

Stack: d k g h c
Example: 3-color this graph

Stack: j d k g h c

This node has degree < 3; remove it!
Example: 3-color this graph

Stack: f j d k g h c

This node has degree < 3; remove it!
Example: 3-color this graph

Stack: e f j d k g h c

This node has degree < 3; remove it!
Example: 3-color this graph

This node has degree < 3; remove it!

Stack: b e f j d k g h c
Example: 3-color this graph

Stack: m b e f j d k g h c
Now, color the nodes in stack order

Find a color for this node that’s not already used in an adjacent node

Stack: m b e f j d k g h c
Now, color the nodes in stack order

Find a color for this node that’s not already used in an adjacent node

Stack: m b e f j d k g h c
Now, color the nodes in stack order

Stack: m b e f j d k g h c

Find a color for this node that’s not already used in an adjacent node.
Now, color the nodes in stack order

Find a color for this node that’s not already used in an adjacent node

Stack: m b e f j d k g h c
Now, color the nodes in stack order

Stack: m b e f j d k g h c

Find a color for this node that’s not already used in an adjacent node
Now, color the nodes in stack order

Find a color for this node that’s not already used in an adjacent node

Stack: \textcolor{red}{m} \textcolor{blue}{b} \textcolor{green}{e} \textcolor{blue}{f} \textcolor{red}{j} \textcolor{blue}{d} \textcolor{green}{k} \textcolor{green}{g} \textcolor{green}{h} \textcolor{green}{c}
We’re about to color node k. This was the only one that was degree ≥ 3 when we removed it. Hence, it is not guaranteed that we can find a color for it now.

But we got lucky, because b and d have the same color!
Now, color the nodes in stack order

Find a color for this node that’s not already used in an adjacent node

Stack: m b e f j d k g h c
Now, color the nodes in stack order

Find a color for this node that’s not already used in an adjacent node

Stack: m b e f j d k g h c
Now, color the nodes in stack order

Stack: m b e f j d k g h c

Find a color for this node that’s not already used in an adjacent node
Now, color the nodes in stack order

Why did this work?
Because (usually) when we removed each node, at that time it had degree < 3. So when we put it back, it’s adjacent to at most 2 already-colored nodes.

Stack: m b e f j d k g h c
Improvements to the Chaitin algorithm

Kempe 1879 graph coloring algorithm
Chaitin et al. 1981 register allocation by coloring
Chaitin 1982: spilling (“leave some nodes uncolored”)
Briggs et al. 1984: coalescing + improved spilling
Procedure P (k, j)
g := \text{mem}[j+12]
h := k - 1
f := g \times h
e := \text{mem}[j+8]
m := \text{mem}[j+16]
b := \text{mem}[f]
c := e + 8
d := c
k := m + 4
j := b
return (d, k, j)

If these nodes can be colored the same color, then you can delete the move instruction.
Improvements to the Chaitin algorithm

Kempe 1879 graph coloring algorithm
Chaitin et al. 1981 register allocation by coloring
Chaitin 1982: spilling (“leave some nodes uncolored”)
Briggs et al. 1984: coalescing + improved spilling

“Briggs reduction:”
Coalesce a move edge c-d, if
(1) no interference edge c-d
(2) coalesced node cd has degree <K
Improvements to the Chaitin algorithm

Kempe 1879 graph coloring algorithm
Chaitin \textit{et al.} 1981 register allocation by coloring

Chaitin 1982: spilling (“leave some nodes uncolored”)

Briggs \textit{et al.} 1984: coalescing + improved spilling

"Briggs reduction:"
Coalesce a move edge c-d, if
(1) no interference edge c-d
(2) coalesced node cd has degree \(< K"
Improvements to the Chaitin algorithm

Kempe 1879 graph coloring algorithm
Chaitin 1981 register allocation by coloring
Chaitin 1982: spilling ("leave some nodes uncolored")
Briggs et al. 1984: coalescing + improved spilling
L. George & A.W. Appel 1996: Iterated Register Coalescing

Interleave Briggs reductions with Kempe reductions

but also:
"George reduction:"
Coalesce a move edge c-d, if
(1) no interference edge c-d
(2) neighbors(d) ⊂ neighbors(c)
Iterated Register Coalescing

LAL GEORGE
Lucent Technologies, Bell Labs Innovations
and
ANDREW W. APPEL
Princeton University

An important function of any register allocator is to target registers so as to eliminate copy instructions. Graph-coloring register allocation is an elegant approach to this problem. If the source and destination of a move instruction do not interfere, then their nodes can be coalesced in the interference graph. Chaitin’s coalescing heuristic could make a graph uncolorable (i.e., introduce spills); Briggs et al. demonstrated a conservative coalescing heuristic that preserves colorability. But Briggs’s algorithm is too conservative and leaves too many move instructions in our programs. We show how to interleaver coloring reductions with Briggs’s coalescing heuristic, leading to an algorithm that is safe but much more aggressive.
Histories

1850 Guthrie
1880 Kempe
1904 Heawood
1920 Wernicke
1960 Birkhoff
1976 Heesch
1996 K. Appel, Haken
2006 Robertson, Sanders, Seymour, Thomas
 Gonthier

1700 Leibniz
1850 Babbage
1920 Hilbert
1930 Gödel
1950 Turing
1960 von Neumann
1980 IBM
1996 Cocke
2006 Chaitin
 Briggs
 L. George & A. Appel

4-color theorem
computing
Program verification

Edsger Dijkstra 1930-2002
Robert Floyd 1936-2001
Tony Hoare 1934-
David Gries 1939-

Proofs (written by hand, checked by hand) about programs
Edinburgh LCF, the first **Proof Assistant**

Construct proofs in a “proof language” by hand (like programs).

Proof-checker program (“kernel”) checks each step of the proof as you build it.

“Tactic” language permits you to write programs to fill in the trivial parts of the proofs.

Robin Milner
1934-2010
Proving in a proof assistant

Inductive nat :=

Fixpoint add (a b: nat) : nat :=
match a with
| O => b
| S a' => S (add a' b)
end.

Theorem add_associative:
forall a b c,
 add a (add b c) = add (add a b) c.
Proof.
Proving in a proof assistant

Inductive nat :=

Fixpoint add (a b : nat) : nat :=
 match a with
 | O => b
 | S a' => S (add a' b)
 end.

Theorem add_associative:
 forall a b c,
 add a (add b c) = add (add a b) c.

Proof.
 intros.
Inductive nat :=
 O : nat | S : nat → nat.

Fixpoint add (a b : nat) : nat :=
match a with
 | O => b
 | S a' => S (add a' b)
end.

Theorem add_associative:
 forall a b c, add a (add b c) = add (add a b) c.
Proof.
 intros.
 induction a.
 * simpl. reflexivity.
 * simpl.
 reflexivity.
 rewrite IHa.
 reflexivity.
Qed.
Proving in a proof assistant

Inductive nat :=

Fixpoint add (a b: nat) : nat :=
 match a with
 | O => b
 | S a' => S (add a' b)
end.

Theorem add_associative:
 forall a b c,
 add a (add b c) = add (add a b) c.

Proof.
intros.
induction a.
* simpl. | reflexivity.
* simpl.
 rewrite IHa.
 reflexivity.
Qed.
Proving in a proof assistant

```coq
Inductive nat :=

Fixpoint add (a b : nat) : nat :=
  match a with
  | O => b
  | S a' => S (add a' b)
  end.

Theorem add Associative:
  forall a b c, add a (add b c) = add (add a b) c.

Proof.
  intros.
  induction a.
  * simpl. reflexivity.
  * simpl.
    rewrite IHa.
    reflexivity.
Qed.
```

1 subgoal

```
a, b, c : nat
IHa : add a (add b c) = add (add a b) c

add (S a) (add b c) = add (add (S a) b) c
```

Ready, proving add associative
Proving in a proof assistant

```
Inductive nat :=  

Fixpoint add (a b : nat) : nat :=  
  match a with  
  | 0 => b  
  | S a' => S (add a' b)  
  end.

Theorem add_associative:  
 forall a b c,  
  add a (add b c) = add (add a b) c.
Proof.  
  intros.  
  induction a.  
  * simpl. reflexivity.  
  * simpl.  
  reflexivity.  
  rewrite IHa.  
  reflexivity.
Qed.
```

```
1 subgoal  
a, b, c : nat  
IHa : add a (add b c) = add (add a b) c

S (add a (add b c)) = S (add (add a b) c)

Error:  
In environment  
a, b, c : nat  
IHa : add a (add b c) = add (add a b) c  
Unable to unify "S (add (add a b) c)" with  
"S (add a (add b c))".
```

```
CoqDe
File Edit View Navigation Try Tactics Templates Queries Tools Compile Windows Help

```

```
Messages Errors Jobs
```

```
Ready, proving add_associative
```

```
Line 17 Char 9  Coq is ready 0 / 0
```
Proving in a proof assistant

```
Inductive nat :=

Fixpoint add (a b: nat) : nat :=
  match a with
  | O => b
  | S a' => S (add a' b)
end.

Theorem add_associative:
  forall a b c, add a (add b c) = add (add a b) c.
Proof.
  intros.
  induction a.
  * simpl. reflexivity.
  * simpl.
  rewrite IHa.
  reflexivity.
Qed.
```

1 subgoal
a, b, c : nat
IHa : add a (add b c) = add (add a b) c

(1/1)
S (add (add a b) c) = S (add (add a b) c)
Inductive nat :=

Fixpoint add (a b : nat) : nat :=
 match a with
 | O => b
 | S a' => S (add a' b)
 end.

Theorem add_associative:
 forall a b c,
 add a (add b c) = add (add a b) c.

Proof.
intros.
induction a.
* simpl. reflexivity.
* simpl.
 rewrite IHa.
 reflexivity.
Qed.
What’s it good for?

Robin Milner’s observation (along with the thousands of people who have worked in this field after 1978, including me):

Machine-checked proofs (and proof assistants) are really good for theorems about computer programs!
Landmarks of program verification

a personal selection

Andrew Appel
1960-
Foundational
Proof-Carrying Code
2005

Verified
Software Toolchain
2014

Xavier Leroy
1968-
CompCert
optimizing C compiler
2006

Verified SHA/HMAC
cryptographic authentication
2015

Gerwin Klein
1975-
seL4
operating system
2013

Zhong Shao
1968-
CertiKOS
operating system
2015
“Haken’s son Armin, by then a graduate student at ... Berkeley, gave a lecture on the four-colour problem.... At the end, the audience split into two groups: the over-forties could not be convinced that a proof by computer was correct, while the under-forties* could not be convinced that a proof containing 700 pages of hand calculations could be correct.”

*By now that would be, “people under 80”
A computer-checked proof of the Four Colour Theorem

Georges Gonthier
Microsoft Research Cambridge

This report gives an account of a successful formalization of the proof of the Four Colour Theorem, which was fully checked by the Coq v7.3.1 proof assistant [13]. This proof is largely based on the mixed mathematics/computer proof [26] of Robertson et al, but contains original contributions as well. This document is organized as follows: section 1 gives a historical introduction to the problem and positions our work in this setting; section 2 defines more precisely what was proved; section 3 explains the broad outline of the proof; section 4 explains how we exploited the features of the Coq assistant to conduct the proof, and gives a brief description of the tactic shell that we used to write our proof scripts; section 5 is a detailed account of the formal proof (for even more details the actual scripts can be consulted); section 6 is a chronological account of how the formal proof was developed; finally, we draw some general conclusions in section 7.
Definition real_model := ... 100 lines of Coq axiomatizing real numbers...

Definition map : Type :=
Definition simple_map : Type → Prop :=
Definition map_colorable : ℕ → map → Prop :=

Theorem four_color:
 ∀ R : real_model, ∀ m : map R, simple_map m → map_colorable 4 m.
Proof.
 ... 60,000 lines of Coq ...
Qed.
Formal Verification of Coalescing Graph-Coloring Register Allocation

Sandrine Blazy1, Benoît Robillard2, and Andrew W. Appel3

1 IRISA - Université Rennes 1
2 CEDRIC - ENSIEE
3 Princeton University

19th European Symposium on Programming, 2010

Abstract. Iterated Register Coalescing (IRC) is a widely used heuristic for performing register allocation via graph coloring. Many implementations in existing compilers follow (more or less faithfully) the imperative algorithm published in 1996. Several mistakes have been found in some of these implementations.

In this paper, we present a formal verification (in Coq) of the whole IRC algorithm. We detail a specification that can be used as a reference for IRC. We also define the theory of register-interference graphs; we implement a purely functional version of the IRC algorithm, and we prove the total correctness of our implementation. The automatic extraction of our IRC algorithm into Caml yields a program with competitive performance. This work has been integrated into the CompCert verified compiler.
In mathematics, as well

Kepler conjecture (1611):
Face-centered cubic is densest possible sphere packing

Hales proof (1998):
5000 planar graphs, each with a computerized nonlinear optimization calculation

Referees: we’re 99% sure it’s correct

Hales et al. 2004-2014:
Flyspec project- Formal verification in HOL Light proof assistant

• Project Director: Thomas Hales
• Project Managers: Ta Thi Hoai An, Mark Adams
• HOL Light libraries and support: John Harrison,
• Isabelle Tame Graph Classification:
 Gertrud Bauer, Tobias Nipkow,
• Chief Programmer: Alexey Solovyev,
 • Nonlinear inequalities: Victor Magron, Sean McLaughlin, Roland Zumkeller,
 • Linear Programming: Steven Obua,
 • Microsoft Azure Cloud support: Daron Green, Joe Pleso, Dan Synek, Wenming Ye,
• Chief Formalizer: Hoang Le Truong,
 • Text formalization: Jason Rute, Dang Tat Dat, Nguyen Tat Thang, Nguyen Quang Truong, Tran Nam Trung, Trieu Thi Diep, Vu Khac Ky, Vuong Anh Quyen,
• Student Projects: Catalin Anghel, Matthew Wampler-Doty, Nicholas Volker, Nguyen Duc Tam, Nguyen Duc Thinh, Vu Quang Thanh,
• Proof Automation: Cezary Kaliszyk, Josef Urban,
• Editing: Erin Susick, Laurel Martin, Mary Johnston,
• External Advisors and Design: Freek Wiedijk, Georges Gonthier, Jeremy Avigad, Christian Marchal,
• Institutional Support: NSF, Microsoft Azure Research, William Benter Foundation, University of Pittsburgh, Radboud University, Institute of Math (VAST), VIASM.
Conclusions

- Graph coloring, with or without proofs, is widespread in Computer Science
- Computer-checked proofs are widespread, and important, in Computer Science
- Computer-checked proofs are even becoming important in Mathematics