
Graph Coloring and
Machine Proofs in

Computer Science, 1977-2017

Andrew W. Appel
Princeton University

1

Can it really be a proof if you
can’t check it by machine?

2

Alfred B. Kempe, 1849-1922

In 1876, Kempe’s Universality Theorem: for an
arbitrary algebraic plane curve, a linkage can be
constructed that draws the curve.

3

Barrister of ecclesiastical law; mathematician

Oops! There was a bug in the proof.

Finally proved in 2002 by Michael Kapovich and John J. Millson

Alfred B. Kempe, 1849-1922

In 1879, proof of the 4-color theorem: every
planar graph can be colored using at most 4
colors.

(Any nodes connected

by an edge must have

different colors.)

4

f

e

b m

cd

kj

h

g

Barrister of ecclesiastical law; mathematician

Alfred B. Kempe 1879

6-color theorem:

Every planar graph is 6-colorable.

5-color theorem:

Every planar graph is 5-colorable.

4-color theorem:

Every planar graph is 4-colorable.

5

Percy J. Heawood
found a bug in the proof, 1890

Alfred B. Kempe 1879

6-color theorem:

Every planar graph is 6-colorable.

6

Proof:
1. Every planar graph has at least one node of degree <6

(by Euler’s polyhedron formula): V−E+F = 2, average degree < 6

2. If you remove one node from a planar graph,
what remains is a planar graph.

3. This leads to an algorithm for coloring graphs . . .

Kempe’s graph-coloring algorithm

To 6-color a planar graph:

1. Every planar graph has at least one vertex of
degree ≤ 5.

2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4. Put the vertex back. It is adjacent to at most
5 vertices, which use up at most 5 colors from
your “palette.” Use the 6th color for this vertex.

7

Example: 6-color this graph

8

f

e

b m

cd

k
j

h

g

Example: 6-color this graph

9

f

e

b m

cd

k
j

h

g This node

has degree < 6 ;

remove it!

Example: 6-color this graph

10

f

e

b m

cd

k
j

h

g

Now, by induction, suppose
we could color the rest of
the graph

Now, color the residual graph

11

f

e

b m

cd

k
j

h

g
Find a color for this

node that’s not already

used in an adjacent node

Now, by induction, suppose
we could color the rest of
the graph

We can surely
find a color for c

Put back the node c, and color it

12

f

e

b m

cd

k
j

h

g

Why did this work?
Because when we removed
each node, at that time it had degree < 6.
So when we put it back, it’s adjacent
to at most 5 already-colored nodes.

Kempe’s 4-coloring algorithm

To 4-color a planar graph:

1. Find a vertex of degree ≤ 5 (there must be one)

2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4. Put the vertex back.

13

These cases: easy; you can find
a color not used by an adjacent node.

This case: use the method of “Kempe chains”

This case . . .

Kempe chains

14

b

d
k

j

g

Suppose you are 4-coloring this graph:

f

h

k

u

?

Kempe’s 4-coloring algorithm

To 4-color a planar graph:

1. Find a vertex of degree ≤ 5 (there must be one)

2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4. Put the vertex back.

15

These cases: easy

This case: use “Kempe chains”

This case: use “simultaneous Kempe chains”

Kempe’s 4-coloring algorithm

To 4-color a planar graph:

1. Find a vertex of degree ≤ 5 (there must be one)

2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4. Put the vertex back.

16

These cases: easy

This case: use “Kempe chains”

“simultaneous Kempe chains”
Heawood 1890

5-color thm
Every planar graph
contains at least 1 of
these configurations:

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!

6-color thm
Every planar graph
contains at least 1 of
these configurations:

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!

17

Kempe 1879 Kempe 1879

Unavoidable sets

18

Illinois Journal of Mathematics
1976 (received 1974)

Wernicke, Franklin,
Lebesgue, Heesch

19

4-color thm
Every planar graph
contains at least 1 of
these configurations:

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!

Heinrich Heesch
1906-1995

“unavoidable set”

~1970: [paraphrase]

I estimate that computers

will be powerful enough someday,

to find an unavoidable set of

perhaps 10,000 reducible

configurations

of “reducible

configurations”

would prove

the 4-color

theorem

?
?

?

?

?
?

??

?

?

Appel and Haken

1972-1974: Let’s use computers to
analyze unavoidable sets, and estimate,

(1) how many configurations might be
in an unavoidable set of reducible
configurations?

(2) in what year will future computers
be fast enough to calculate this?

20

21

Appel and Haken

1974: and the estimate is,

(1) about 2000 configurations

22

1974: and the estimate is,

(1) about 2000 configurations

(2) in the year 1972!

IBM System/370 Model 168, 1972

Appel and Haken and Koch

1974-1976: Calculate

(1) an unavoidable set of 1900 configs
(using a version of Heesch’s
“discharging” procedure)

(2) reducibility proofs for each config.,
using various reducibility algorithms
(implemented with the assistance of C.S. PhD
student John Koch)

23

Teletype model ASR-33 110 bits per second

24

Mathematical Games

25

5-color thm
Every planar graph
contains at least 1 of
these configurations:

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!

6-color thm
Every planar graph
contains at least 1 of
these configurations:

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!

26

(a degree 5 node)

(degree 4) (degree 1)

4-color thm
Every planar graph
contains at least 1 of
these configurations:

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!

(and 1900 more)

Kempe 1879 Kempe 1879 Appel and Haken 1976

Math department postage meter

27

July 22, 1976

My own contribution to the 4CT proofreading:

“[with] five of their children …
Dorothea and Armin Haken,
and Laurel, Peter, and Andrew
Appel, they set to work
[proofreading configurations
from computer printouts]”

Robin Wilson, 2002 28

Dorothea Haken
Blostein

(1959-)

Professor of C.S.
Queens University

Laurel Appel
(1962-2013)

Adjunct Assoc. Prof.
of Biology

Wesleyan University

None.

two

Which part don’t you believe?

“Haken’s son Armin, by then a graduate student at …
Berkeley, gave a lecture on the four-colour problem….
At the end, the audience split into two groups: the over-
forties could not be convinced that a proof by computer
was correct, while the under-forties could not be
convinced that a proof containing 700 pages of hand
calculations could be correct.”

29Princeton University Press 2002

One history

30

Kempe

Guthrie

Heawood

Birkhoff

Wernicke
“unavoidable set”

“reducible”

Heesch

Appel, Haken “Every planar map

is 4-colorable”

“discharging” to

compute unavoidable set

Robertson, Sanders,
Seymour, Thomas improved proof,

same basic recipe

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

One history

31

Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

Another history
1700 Leibniz
1850 Babbage
1920 Hilbert

Can we mechanize

mathematics?

1930 Gödel
Turing

Can we mechanize

mathematics?

Can we mechanize

mathematics?

Proof checking: yes

Proving: not quite

In particular, a short

theorem statement

might have a very

long proof.

Yes, we noticed!

One history

32

Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

Another history
1700 Leibniz
1850 Babbage
1920 Hilbert

Can we mechanize

mathematics?

1930 Gödel
Turing

Can we mechanize

mathematics?

Can we mechanize

mathematics?

Proof checking: yes

Proving: not quite

1950 von Neumann

1960 IBM
Let’s build

those computers!

Thank you!Thank you!

One history

33

Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

Another history
1700 Leibniz
1850 Babbage
1920 Hilbert

Can we mechanize

mathematics?

1930 Gödel
Turing

Can we mechanize

mathematics?

Can we mechanize

mathematics?

Proof checking: yes

Proving: not quite

1950 von Neumann

1960 IBM
Let’s build

those computers!

John Robin
Cocke 1970s Milner

Proof

Assistants

Optimizing

compilers

One history

34

Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

Another history
1700 Leibniz
1850 Babbage
1920 Hilbert

1930 Gödel
Turing

1950 von Neumann

1960 IBM

John
Cocke 1925-2002

IBM Research

Register Allocation

35

Procedure P (k, j)
g := mem[j+12]
h := k-1
f := g∗h
e := mem [j+8]
m := mem[j+16]
b := mem[f]
c := e+8
d := c
k := m+4
j := b
return (d, k, j)

r1
r2
r3
r4

registers memory

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

.

.

g

j

f
e

k

h

m
b
c

d

One history

36

Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

Another history
1700 Leibniz
1850 Babbage
1920 Hilbert

1930 Gödel
Turing

1950 von Neumann

1960 IBM

John
Cocke 1925-2002

IBM Research

Ashok Chandra
(1948-2014)

Gregory Chaitin
(1947-)

1977:

Hmm, this 4-color

theorem is interesting.

John, ask Gregory to try

Kempe’s coloring algorithm

in the register allocator

of our compiler.

Gregory Chaitin

I was recruited to do a coloring register allocator by John Cocke,

IBM's greatest computer architect, who needed it for his RISC project.

He mentioned that Ashok K. Chandra, also at IBM Research at that time,

had suggested recursively reducing the graph by eliminating vertices of

degree less than the number of available colors, as just one possible

component of a coloring algorithm.

I certainly remember the spectacular work your father did with Haken ... I

heard Haken give a talk on their proof soon after they had done it. But the

details of the proof escaped me. That was more Chandra's area of interest;

mine is information theory.

37

One of the most influential papers in all of
computer science

Register Allocation Chaitin et al. 1981

38

Procedure P (k, j)
g := mem[j+12]
h := k-1
f := g∗h
e := mem [j+8]
m := mem[j+16]
b := mem[f]
c := e+8
d := c
k := m+4
j := b
return (d, k, j)

g

f

h

e

b
m c

d

k

k

j

j

Live ranges Interferences
(some not shown)

Interference
Graph

figure 11.1 from Modern Compiler Implementation in ML,
Andrew W. Appel, Cambridge University Press 1998

Heuristic hack of Kempe’s algorithm

To mostly K-color a graph (whether planar or not!)

Is there a vertex of degree < K ?

If so:

Remove this vertex.

Color the rest of the graph with a recursive call to the algorithm.

Put the vertex back. It is adjacent to at most K-1 vertices. They use (among
them) at most K-1 colors. That leaves one of your colors for this vertex.

If not:

Remove this vertex.

Color the rest of the graph with a recursive call.

Put the vertex back. It is adjacent to ≥ K vertices. How many colors do these
vertices use among them?

If < K : there is an unused color to use for this vertex

If ≥ K:
39

Chaitin’s

Heuristic hack of Kempe’s algorithm

To mostly K-color a graph (whether planar or not!)

Is there a vertex of degree < K ?

If so:

Remove this vertex.

Color the rest of the graph with a recursive call to the algorithm.

Put the vertex back. It is adjacent to at most K-1 vertices. They use (among
them) at most K-1 colors. That leaves one of your colors for this vertex.

If not:

Remove this vertex.

Color the rest of the graph with a recursive call.

Put the vertex back. It is adjacent to ≥ K vertices. How many colors do these
vertices use among them?

If < K : there is an unused color to use for this vertex

If ≥ K: leave this vertex uncolored.
40

What?
Are we allowed to do that?

Yes!
This is an algorithm to

“mostly K-color” a graph.

Briggs’s version of Chaitin’s

Example: 3-color this graph

41

f

e

b m

cd

k
j

h

g

Stack:

Example: 3-color this graph

42

f

e

b m

cd

k
j

h

g

Stack:

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

43

f

e

b m

cd

k
j

h

g

Stack: c
Push node c on

the stack

Example: 3-color this graph

44

f

e

b m

cd

k
j

h

g

Stack: c

Removing c

lowers the degree

of nodes b and m;

that will be helpful later!

Example: 3-color this graph

45

f

e

b m

d

k
j

h

g

Stack: c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

46

f

e

b m

d

k
j

h

g

Stack: h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

47

f

e

b m

d

k
j

g

Stack: h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

48

f

e

b m

d

k
j

Stack: g h c

No node has degree < 3

Pick a node arbitrarily,

remove it, and

push it on the stack

Example: 3-color this graph

49

f

e

b m

d

k
j

Stack: k g h c

Example: 3-color this graph

50

f

e

b m

d

j

Stack: k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

51

f

e

b mj

Stack: d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

52

f

e

b m

Stack: j d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

53

e

b m

Stack: f j d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

54

b m

Stack: e f j d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

55

m

Stack: b e f j d k g h c

This node

has degree < 3 ;

remove it!

Example: 3-color this graph

56
Stack: m b e f j d k g h c

Now, color the nodes in stack order

57
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

Find a color for this

node that’s not already

used in an adjacent node

Find a color for this

node that’s not already

used in an adjacent node

Now, color the nodes in stack order

58
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

Find a color for this

node that’s not already

used in an adjacent node

Now, color the nodes in stack order

59
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

Find a color for this

node that’s not already

used in an adjacent node

Now, color the nodes in stack order

60
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

Find a color for this

node that’s not already

used in an adjacent node

Now, color the nodes in stack order

61
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

Find a color for this

node that’s not already

used in an adjacent node

Now, color the nodes in stack order

62
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

Find a color for this

node that’s not already

used in an adjacent node

Now, color the nodes in stack order

63
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

We’re about to color node k.

This was the only one that was

degree ≥ 3 when we removed it.

Hence, it is not guaranteed that

we can find a color for it now.

But we got lucky, because

b and d have the same color!

Now, color the nodes in stack order

64
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

Find a color for this

node that’s not already

used in an adjacent node

Now, color the nodes in stack order

65
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

Find a color for this

node that’s not already

used in an adjacent node

Now, color the nodes in stack order

66
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g
Find a color for this

node that’s not already

used in an adjacent node

Now, color the nodes in stack order

67
Stack: m b e f j d k g h c

f

e

b m

cd

k
j

h

g

Why did this work?
Because (usually) when we removed
each node, at that time it had degree < 3.
So when we put it back, it’s adjacent
to at most 2 already-colored nodes.

Improvements to the Chaitin algorithm

68

Kempe 1879 graph coloring algorithm

Chaitin et al. 1981 register allocation by coloring

Chaitin 1982: spilling (“leave some nodes uncolored”)

Briggs et al. 1984: coalescing + improved spilling

Move coalescing

69

Procedure P (k, j)
g := mem[j+12]
h := k-1
f := g∗h
e := mem [j+8]
m := mem[j+16]
b := mem[f]
c := e+8
d := c
k := m+4
j := b
return (d, k, j)

g

f

h

e

b
m c

d

k

k

j

j

Live ranges Interference
Graph

figure 11.1 from Modern Compiler Implementation in ML,
Andrew W. Appel, Cambridge University Press 1998

If these nodes can be colored the same color,
then you can delete the move instruction

Improvements to the Chaitin algorithm

70

c

e

b m
d

j

“Briggs reduction:”
Coalesce a move edge c-d, if
(1) no interference edge c-d
(2) coalesced node cd has degree <K

Kempe 1879 graph coloring algorithm

Chaitin et al. 1981 register allocation by coloring

Chaitin 1982: spilling (“leave some nodes uncolored”)

Briggs et al. 1984: coalescing + improved spilling

Improvements to the Chaitin algorithm

Kempe 1879 graph coloring algorithm

Chaitin et al. 1981 register allocation by coloring

71

Chaitin 1982: spilling (“leave some nodes uncolored”)

Briggs et al. 1984: coalescing + improved spilling

cd

e

b m
j

“Briggs reduction:”
Coalesce a move edge c-d, if
(1) no interference edge c-d
(2) coalesced node cd has degree <K

Improvements to the Chaitin algorithm

Kempe 1879 graph coloring algorithm

Chaitin 1981 register allocation by coloring

72

Chaitin 1982: spilling (“leave some nodes uncolored”)

Briggs et al. 1984: coalescing + improved spilling

L. George & A.W. Appel 1996: Iterated Register Coalescing

c

e

b m
d

j

but also:
“George reduction:”
Coalesce a move edge c-d, if
(1) no interference edge c-d
(2) neighbors(d) ⊂ neighbors(c)

Interleave Briggs reductions
with Kempe reductions

73

Histories

74

Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

K. Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

1700 Leibniz
1850 Babbage
1920 Hilbert

1930 Gödel
Turing

1950 von Neumann

1960 IBM

Cocke

1980 Chaitin

Briggs

4-color theorem computing

1996 L. George
& A. Appel

Histories: Logic

75

Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

K. Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

1700 Leibniz
1850 Babbage
1920 Hilbert

1930 Gödel
Turing

1950 von Neumann

1960 IBM

Cocke

1980 Chaitin

Briggs

4-color theorem computing

Church

Milner1977

1996 L. George
& A. Appel

1970 Dijkstra, Floyd, Hoare

Program verification

76

David Gries
1939-

Tony Hoare
1934-

Robert Floyd
1936-2001

Proofs (written by hand, checked by hand) about programs

Edsger Dijkstra
1930-2002

Edinburgh LCF, the first Proof Assistant

77

1978

Construct proofs in a “proof language”
by hand (like programs).

Proof-checker program (“kernel”)
checks each step of the proof as you
build it.

“Tactic” language permits you to
write programs to fill in the trivial
parts of the proofs.

Robin Milner
1934-2010

Proving in a proof assistant

78

Proving in a proof assistant

79

Proving in a proof assistant

80

Proving in a proof assistant

81

Proving in a proof assistant

82

Proving in a proof assistant

83

Proving in a proof assistant

84

Proving in a proof assistant

85

What’s it good for?

Robin Milner’s observation (along with the thousands of

people who have worked in this field after 1978, including me):

Machine-checked proofs (and proof assistants)
are really good for theorems about computer
programs!

86

Landmarks of program verification

87

Xavier Leroy
1968-

CompCert
optimizing C compiler

2006

Zhong Shao
1968-

CertiKOS
operating system

2015

Gerwin Klein
1975-
seL4

operating system
2013

Andrew Appel
1960-

Foundational
Proof-Carrying Code

2005

Verified

Software Toolchain

2014

Verified SHA/HMAC
cryptographic authentication

2015

a personal selection

Math

88

Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

K. Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

1700 Leibniz
1850 Babbage
1920 Hilbert

1930 Gödel
Turing

1950 von Neumann

1960 IBM

Cocke

1980 Chaitin

Briggs

1996 L. George
& A. Appel

4-color theorem computing

Church

Milner1977

1990s numerous

software
verification

Computing Logic

21st century
more numerous!

1970 Dijkstra, Floyd, Hoare

Which part don’t you believe?

“Haken’s son Armin, by then a graduate
student at … Berkeley, gave a lecture on
the four-colour problem…. At the end,
the audience split into two groups: the
over-forties could not be convinced that
a proof by computer was correct, while
the under-forties* could not be
convinced that a proof containing 700
pages of hand calculations could be
correct.”

89

*By now that would be, “people under 80”

91

Georges Gonthier
1962-

2005 (see also Notices of the AMS 2008)

“Trusted base:” 141 lines

92

Definition real_model := . . . 100 lines of Coq axiomatizing real numbers...

Definition map : Type :=
Definition simple_map: Type → Prop :=
Definition map_colorable: ℕ → map → Prop :=

Theorem four_color:
∀ R : real_model, ∀m : map R, simple_map m → map_colorable 4 m.

Proof.
. . . 60,000 lines of Coq ...

Qed.

40 lines of
elementary topology

Math

93

Kempe

Guthrie

Heawood

Birkhoff
Wernicke

Heesch

K. Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2005

1700 Leibniz
1850 Babbage
1920 Hilbert

1930 Gödel
Turing

1950 von Neumann

1960 IBM

Cocke
1980 Chaitin

Briggs
1996 L. George

& A. Appel

4-color theorem

computing

Church

Milner1977

1990s numerous

machine-checked proof

Computing Logic

94

19th European Symposium on Programming, 2010

Math

95

Kempe

Guthrie

Heawood

Birkhoff
Wernicke

Heesch

K. Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2005

1700 Leibniz
1850 Babbage
1920 Hilbert

1930 Gödel
Turing

1950 von Neumann

1960 IBM

Cocke
1980 Chaitin

Briggs
1996 L. George

& A. Appel

4-color theorem

computing

Church

Milner1977

1990s numerous

machine-checked proof

Computing Logic

Blazy, Robillard, A. Appel

In mathematics, as well

96

Kepler conjecture (1611):
Face-centered cubic is

densest possible sphere packing

Hales proof (1998):
5000 planar graphs,

each with a computerized
nonlinear optimization calculation

Referees: we’re 99% sure it’s correct

•Project Director: Thomas Hales

•Project Managers: Ta Thi Hoai An, Mark Adams

•HOL Light libraries and support: John Harrison,

•Isabelle Tame Graph Classification:

Gertrud Bauer, Tobias Nipkow,

•Chief Programmer: Alexey Solovyev,

• Nonlinear inequalities: Victor Magron, Sean

McLaughlin, Roland Zumkeller,

• Linear Programming: Steven Obua,

• Microsoft Azure Cloud support: Daron Green, Joe

Pleso, Dan Synek, Wenming Ye,

•Chief Formalizer: Hoang Le Truong,

• Text formalization: Jason Rute, Dang Tat Dat, Nguyen

Tat Thang, Nguyen Quang Truong, Tran Nam Trung,

Trieu Thi Diep, Vu Khac Ky, Vuong Anh Quyen,

•Student Projects: Catalin Anghel, Matthew Wampler-Doty,

Nicholas Volker, Nguyen Duc Tam, Nguyen Duc Thinh, Vu

Quang Thanh,

•Proof Automation: Cezary Kaliszyk, Josef Urban,

•Editing: Erin Susick, Laurel Martin, Mary Johnston,

•External Advisors and Design: Freek Wiedijk, Georges Gonthier,

Jeremy Avigad, Christian Marchal,

•Institutional Support: NSF, Microsoft Azure Research, William

Benter Foundation, University of Pittsburgh, Radboud University,

Institute of Math (VAST), VIASM.

Hales et al. 2004-2014:
Flyspec project- Formal verification

in HOL Light proof assistant

Thomas Hales
1958-

Conclusions

• Graph coloring, with or without proofs, is
widespread in Computer Science

• Computer-checked proofs are widespread, and
important, in Computer Science

• Computer-checked proofs are even becoming
important in Mathematics

98

