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Can it really be a proof if you 
can’t check it by machine?
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Alfred B. Kempe, 1849-1922

In 1876, Kempe’s Universality Theorem:   for an 
arbitrary algebraic plane curve, a linkage can be 
constructed that draws the curve.
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Barrister of ecclesiastical law; mathematician

Oops!  There was a bug in the proof.

Finally proved in 2002 by Michael Kapovich and John J. Millson



Alfred B. Kempe, 1849-1922

In 1879, proof of the 4-color theorem: every 
planar graph can be colored using at  most 4 
colors.

(Any nodes connected

by an edge must have

different colors.)
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Barrister of ecclesiastical law; mathematician



Alfred B. Kempe            1879

6-color theorem:

Every planar graph is 6-colorable.

5-color theorem:

Every planar graph is 5-colorable.

4-color theorem:

Every planar graph is 4-colorable.
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Percy J. Heawood
found a bug in the proof, 1890



Alfred B. Kempe            1879

6-color theorem:

Every planar graph is 6-colorable.
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Proof:
1. Every planar graph has at least one node of degree <6

(by Euler’s polyhedron formula):    V−E+F = 2,   average degree < 6

2.  If you remove one node from a planar graph,
what remains is a planar graph.

3.  This leads to an algorithm for coloring graphs . . .



Kempe’s graph-coloring algorithm

To 6-color a planar graph:

1. Every planar graph has at least one vertex of 
degree ≤ 5.

2. Remove this vertex.

3. Color the rest of the graph with a recursive 
call to Kempe’s algorithm.

4. Put the vertex back.  It is adjacent to at most 
5 vertices, which use up at most 5 colors from 
your “palette.”  Use the 6th color for this vertex.
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Example:  6-color this graph
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Example:  6-color this graph
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has degree < 6 ;

remove it!



Example:  6-color this graph
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Now, by induction, suppose
we could color the rest of
the graph



Now, color the residual graph
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Find a color for this

node that’s not already

used in an adjacent node

Now, by induction, suppose
we could color the rest of
the graph

We can surely
find a color for c



Put back the node c, and color it

12

f

e

b m

cd

k
j

h

g

Why did this work?
Because when we removed
each node, at that time it had degree < 6.
So when we put it back, it’s adjacent
to at most 5 already-colored nodes.



Kempe’s 4-coloring algorithm

To 4-color a planar graph:

1. Find a vertex of degree ≤ 5  (there must be one)

2. Remove this vertex.

3. Color the rest of the graph with a recursive 
call to Kempe’s algorithm.

4. Put the vertex back.  
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These cases:  easy; you can find
a color not used by an adjacent node.

This case:  use the method of “Kempe chains” 

This case . . .



Kempe chains
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Kempe’s 4-coloring algorithm

To 4-color a planar graph:

1. Find a vertex of degree ≤ 5  (there must be one)

2. Remove this vertex.

3. Color the rest of the graph with a recursive 
call to Kempe’s algorithm.

4. Put the vertex back.  
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These cases:  easy

This case:  use “Kempe chains” 

This case:  use “simultaneous Kempe chains”



Kempe’s 4-coloring algorithm

To 4-color a planar graph:

1. Find a vertex of degree ≤ 5  (there must be one)

2. Remove this vertex.

3. Color the rest of the graph with a recursive 
call to Kempe’s algorithm.

4. Put the vertex back.  
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These cases:  easy

This case:  use “Kempe chains” 

“simultaneous Kempe chains”
Heawood 1890



5-color thm
Every planar graph 
contains at least 1 of 
these configurations:

“reduce”: Replace that 
configuration with a 
smaller config., color 
the remaining graph, 
put the node back, 
you can find a color 
for the node!

6-color thm
Every planar graph 
contains at least 1 of 
these configurations:

“reduce”: Replace that 
configuration with a 
smaller config., color 
the remaining graph, 
put the node back, 
you can find a color 
for the node!
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Kempe 1879 Kempe 1879



Unavoidable sets
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Illinois Journal of Mathematics
1976 (received 1974)



Wernicke, Franklin, 
Lebesgue, Heesch
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4-color thm
Every planar graph 
contains at least 1 of 
these configurations:

“reduce”: Replace that 
configuration with a 
smaller config., color 
the remaining graph, 
put the node back, 
you can find a color 
for the node!

Heinrich Heesch
1906-1995

“unavoidable set”

~1970:  [paraphrase]

I estimate that computers

will be powerful enough someday,

to find an unavoidable set of

perhaps 10,000 reducible

configurations

of “reducible 

configurations”

would prove 

the 4-color 

theorem

?
?

?

?

?
?

??

?

?



Appel and Haken

1972-1974:  Let’s use computers to 
analyze unavoidable sets, and estimate,

(1) how many configurations might be 
in an unavoidable set of reducible 
configurations?

(2) in what year will future computers 
be fast enough to calculate this? 
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Appel and Haken

1974:  and the estimate is,

(1) about 2000 configurations 
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1974:  and the estimate is,

(1) about 2000 configurations 

(2) in the year 1972!

IBM System/370 Model 168,  1972



Appel and Haken and Koch

1974-1976:  Calculate

(1) an unavoidable set of 1900 configs
(using a version of Heesch’s
“discharging” procedure)

(2) reducibility proofs for each config., 
using various reducibility algorithms  
(implemented with the assistance of C.S. PhD 
student John Koch) 
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Teletype model ASR-33     110 bits per second
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Mathematical Games

25



5-color thm
Every planar graph 
contains at least 1 of 
these configurations:

“reduce”: Replace that 
configuration with a 
smaller config., color 
the remaining graph, 
put the node back, 
you can find a color 
for the node!

6-color thm
Every planar graph 
contains at least 1 of 
these configurations:

“reduce”: Replace that 
configuration with a 
smaller config., color 
the remaining graph, 
put the node back, 
you can find a color 
for the node!
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(a degree 5 node)

(degree 4) (degree 1)

4-color thm
Every planar graph 
contains at least 1 of 
these configurations:

“reduce”: Replace that 
configuration with a 
smaller config., color 
the remaining graph, 
put the node back, 
you can find a color 
for the node!

(and 1900 more)

Kempe 1879 Kempe 1879 Appel and Haken 1976



Math department postage meter
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July 22, 1976



My own contribution to the 4CT proofreading:

“[with] five of their children … 
Dorothea and Armin Haken, 
and Laurel, Peter, and Andrew 
Appel, they set to work 
[proofreading configurations 
from computer printouts]”

Robin Wilson, 2002 28

Dorothea Haken
Blostein

(1959-)

Professor of C.S.
Queens University

Laurel Appel
(1962-2013)

Adjunct Assoc. Prof.
of Biology

Wesleyan University

None.

two



Which part don’t you believe?

“Haken’s son Armin, by then a graduate student at … 
Berkeley, gave a lecture on the four-colour problem….  
At the end, the audience split into two groups: the over-
forties could not be convinced that a proof by computer 
was correct, while the under-forties could not be 
convinced that a proof containing 700 pages of hand 
calculations could be correct.”

29Princeton University Press 2002



One history
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Kempe

Guthrie

Heawood

Birkhoff

Wernicke
“unavoidable set”

“reducible”

Heesch

Appel, Haken “Every planar map 

is 4-colorable”

“discharging”   to 

compute unavoidable set

Robertson, Sanders,
Seymour, Thomas improved proof,

same basic recipe

Gonthier
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One history
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Appel, Haken
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Gonthier

1880
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2006

Another history
1700   Leibniz
1850   Babbage
1920   Hilbert

Can we mechanize

mathematics?

1930  Gödel
Turing

Can we mechanize

mathematics?

Can we mechanize

mathematics?

Proof checking: yes

Proving: not quite

In particular, a short

theorem statement

might have a very

long proof.

Yes, we noticed!



One history

32

Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960

1976

1996

2006

Another history
1700   Leibniz
1850   Babbage
1920   Hilbert

Can we mechanize

mathematics?

1930  Gödel
Turing

Can we mechanize

mathematics?

Can we mechanize

mathematics?

Proof checking: yes

Proving: not quite

1950  von Neumann

1960  IBM
Let’s build

those computers!

Thank you!Thank you!



One history
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Another history
1700   Leibniz
1850   Babbage
1920   Hilbert

Can we mechanize

mathematics?

1930  Gödel
Turing

Can we mechanize

mathematics?

Can we mechanize

mathematics?

Proof checking: yes

Proving: not quite

1950  von Neumann

1960  IBM
Let’s build

those computers!

John                        Robin
Cocke 1970s     Milner

Proof

Assistants

Optimizing

compilers



One history
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1700   Leibniz
1850   Babbage
1920   Hilbert

1930  Gödel
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Cocke 1925-2002

IBM Research



Register Allocation
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Procedure P (k, j)
g := mem[j+12]
h := k-1
f := g∗h
e := mem [j+8]
m := mem[j+16]
b := mem[f]
c := e+8
d := c
k := m+4
j := b
return (d, k, j)

r1
r2
r3
r4

registers memory

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

.  

.  

g 

j

f
e

k

h

m
b
c

d



One history
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Kempe

Guthrie

Heawood

Birkhoff

Wernicke

Heesch

Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1880

1850

1904

1920

1960
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2006

Another history
1700   Leibniz
1850   Babbage
1920   Hilbert

1930  Gödel
Turing

1950  von Neumann

1960  IBM

John                   
Cocke 1925-2002

IBM Research

Ashok Chandra
(1948-2014)

Gregory Chaitin
(1947-)

1977:  

Hmm, this 4-color

theorem is interesting.

John, ask Gregory to try

Kempe’s coloring algorithm

in the register allocator

of our compiler.



Gregory Chaitin

I was recruited to do a coloring register allocator by John Cocke,

IBM's greatest computer architect, who needed it for his RISC project. 

He mentioned that Ashok K. Chandra, also at IBM Research at that time,

had suggested recursively reducing the graph by eliminating vertices of 

degree less than the number of available colors, as just one possible 

component of a coloring algorithm. 

I certainly remember the spectacular work your father did with Haken ...   I 

heard Haken give a talk on their proof soon after they had done it. But the 

details of the proof escaped me. That was more Chandra's area of interest; 

mine is information theory.

37

One of the most influential papers in all of 
computer science



Register Allocation            Chaitin et al.  1981
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Procedure P (k, j)
g := mem[j+12]
h := k-1
f := g∗h
e := mem [j+8]
m := mem[j+16]
b := mem[f]
c := e+8
d := c
k := m+4
j := b
return (d, k, j)

g 

f 

h 

e 

b 
m c 

d 

k 

k 

j 

j

Live ranges Interferences
(some not shown)

Interference
Graph

figure 11.1 from Modern Compiler Implementation in ML,
Andrew W. Appel, Cambridge University Press 1998



Heuristic hack of Kempe’s algorithm

To mostly K-color a graph (whether planar or not!)

Is there a vertex of degree < K  ?

If so: 

Remove this vertex.

Color the rest of the graph with a recursive call to the algorithm.

Put the vertex back.  It is adjacent to at most K-1 vertices.  They   use (among 
them) at most K-1 colors.  That leaves one of your colors for this vertex.

If not:

Remove this vertex.

Color the rest of the graph with a recursive call.

Put the vertex back.  It is adjacent to ≥ K vertices.  How many colors do these 
vertices use among them?

If  < K :   there is an unused color to use for this vertex

If  ≥ K:
39

Chaitin’s



Heuristic hack of Kempe’s algorithm

To mostly K-color a graph (whether planar or not!)

Is there a vertex of degree < K  ?

If so: 

Remove this vertex.

Color the rest of the graph with a recursive call to the algorithm.

Put the vertex back.  It is adjacent to at most K-1 vertices.  They   use (among 
them) at most K-1 colors.  That leaves one of your colors for this vertex.

If not:

Remove this vertex.

Color the rest of the graph with a recursive call.

Put the vertex back.  It is adjacent to ≥ K vertices.  How many colors do these 
vertices use among them?

If  < K :   there is an unused color to use for this vertex

If  ≥ K:  leave this vertex uncolored.
40

What?  
Are we allowed to do that?

Yes!  
This is an algorithm to 

“mostly K-color” a graph.

Briggs’s version of Chaitin’s



Example:  3-color this graph
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Example:  3-color this graph
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This node

has degree < 3 ;

remove it!



Example:  3-color this graph
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Example:  3-color this graph
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Stack:  c

Removing c

lowers the degree

of nodes b and m;

that will be helpful later!



Example:  3-color this graph
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has degree < 3 ;

remove it!



Example:  3-color this graph
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This node

has degree < 3 ;

remove it!



Example:  3-color this graph
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has degree < 3 ;

remove it!



Example:  3-color this graph
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Pick a node arbitrarily,

remove it, and

push it on the stack



Example:  3-color this graph
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Example:  3-color this graph
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This node

has degree < 3 ;

remove it!



Example:  3-color this graph

51

f

e

b mj

Stack:  d k g h c

This node

has degree < 3 ;

remove it!



Example:  3-color this graph
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This node

has degree < 3 ;

remove it!



Example:  3-color this graph
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This node

has degree < 3 ;

remove it!



Example:  3-color this graph
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b m

Stack:  e f j d k g h c

This node

has degree < 3 ;

remove it!



Example:  3-color this graph
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m

Stack:  b e f j d k g h c

This node

has degree < 3 ;

remove it!



Example:  3-color this graph
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Now, color the nodes in stack order
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Now, color the nodes in stack order
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Now, color the nodes in stack order
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Now, color the nodes in stack order
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Now, color the nodes in stack order
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Now, color the nodes in stack order
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Now, color the nodes in stack order
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We’re about to color node k.

This was the only one that was 

degree ≥ 3 when we removed it.  

Hence, it is not guaranteed that 

we can find a color for it now.

But we got lucky, because 

b and d have the same color!



Now, color the nodes in stack order
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Now, color the nodes in stack order
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Now, color the nodes in stack order
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Now, color the nodes in stack order
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Why did this work?
Because (usually) when we removed
each node, at that time it had degree < 3.
So when we put it back, it’s adjacent
to at most 2 already-colored nodes.



Improvements to the Chaitin algorithm
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Kempe 1879     graph coloring algorithm

Chaitin et al.  1981    register allocation by coloring

Chaitin 1982:  spilling   (“leave some nodes uncolored”)

Briggs et al.  1984:  coalescing + improved spilling



Move coalescing
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Procedure P (k, j)
g := mem[j+12]
h := k-1
f := g∗h
e := mem [j+8]
m := mem[j+16]
b := mem[f]
c := e+8
d := c
k := m+4
j := b
return (d, k, j)

g 

f 

h 

e 

b 
m c 

d 

k 

k 

j 

j

Live ranges Interference
Graph

figure 11.1 from Modern Compiler Implementation in ML,
Andrew W. Appel, Cambridge University Press 1998

If these nodes can be colored the same color,
then you can delete the move instruction



Improvements to the Chaitin algorithm

70

c

e

b m
d

j

“Briggs reduction:”
Coalesce a move edge c-d,  if
(1) no interference edge c-d
(2) coalesced node cd has degree <K

Kempe 1879     graph coloring algorithm

Chaitin et al.  1981    register allocation by coloring

Chaitin 1982:  spilling   (“leave some nodes uncolored”)

Briggs et al.  1984:  coalescing + improved spilling



Improvements to the Chaitin algorithm

Kempe 1879     graph coloring algorithm

Chaitin et al.  1981    register allocation by coloring

71

Chaitin 1982:  spilling   (“leave some nodes uncolored”)

Briggs et al.  1984:  coalescing + improved spilling

cd

e

b m
j

“Briggs reduction:”
Coalesce a move edge c-d,  if
(1) no interference edge c-d
(2) coalesced node cd has degree <K



Improvements to the Chaitin algorithm

Kempe 1879     graph coloring algorithm

Chaitin 1981    register allocation by coloring

72

Chaitin 1982: spilling (“leave some nodes uncolored”)

Briggs et al.  1984:  coalescing + improved spilling

L. George & A.W. Appel 1996:  Iterated Register Coalescing

c

e

b m
d

j

but also:
“George reduction:”
Coalesce a move edge c-d,  if
(1) no interference edge c-d
(2) neighbors(d) ⊂ neighbors(c)

Interleave Briggs reductions 
with Kempe reductions
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Histories
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4-color theorem computing
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Histories:                              Logic
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Program verification

76

David Gries
1939-

Tony Hoare
1934-

Robert Floyd
1936-2001

Proofs (written by hand, checked by hand) about programs

Edsger Dijkstra
1930-2002



Edinburgh LCF, the first Proof Assistant
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1978

Construct proofs in a “proof language”
by hand (like programs).

Proof-checker program (“kernel”)
checks each step of the proof as you
build it.

“Tactic” language permits you to
write programs to fill in the trivial
parts of the proofs.

Robin Milner
1934-2010



Proving in a proof assistant
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Proving in a proof assistant
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Proving in a proof assistant
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Proving in a proof assistant
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Proving in a proof assistant
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Proving in a proof assistant
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Proving in a proof assistant
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Proving in a proof assistant

85



What’s it good for?

Robin Milner’s observation (along with the thousands of 

people who have worked in this field after 1978, including me): 

Machine-checked proofs (and proof assistants) 
are really good for theorems about computer 
programs!

86



Landmarks of program verification
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Xavier Leroy
1968-

CompCert
optimizing C compiler

2006

Zhong Shao
1968-

CertiKOS
operating system

2015

Gerwin Klein
1975-
seL4

operating system
2013

Andrew Appel
1960-

Foundational
Proof-Carrying Code

2005

Verified

Software Toolchain

2014

Verified SHA/HMAC
cryptographic authentication

2015

a personal selection



Math
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4-color theorem computing

Church

Milner1977

1990s numerous

software
verification

Computing Logic

21st century
more numerous!

1970  Dijkstra, Floyd, Hoare



Which part don’t you believe?

“Haken’s son Armin, by then a graduate 
student at … Berkeley, gave a lecture on 
the four-colour problem….  At the end, 
the audience split into two groups: the 
over-forties could not be convinced that 
a proof by computer was correct, while 
the under-forties* could not be 
convinced that a proof containing 700 
pages of hand calculations could be 
correct.”
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*By now that would be, “people under 80”
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Georges Gonthier
1962-

2005   (see also Notices of the AMS 2008)



“Trusted base:”  141 lines
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Definition real_model :=   . . . 100 lines of Coq axiomatizing real numbers...

Definition map : Type := 
Definition simple_map: Type → Prop := 
Definition map_colorable: ℕ → map → Prop := 

Theorem four_color: 
∀ R : real_model, ∀m : map R, simple_map m → map_colorable 4 m.

Proof.
. . . 60,000 lines of Coq ...

Qed. 

40 lines of 
elementary topology
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19th European Symposium on Programming, 2010 
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In mathematics, as well
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Kepler conjecture (1611):
Face-centered cubic is

densest possible sphere packing

Hales proof (1998):
5000 planar graphs,

each with a computerized
nonlinear optimization calculation

Referees:  we’re 99% sure it’s correct

•Project Director: Thomas Hales

•Project Managers: Ta Thi Hoai An, Mark Adams

•HOL Light libraries and support: John Harrison,

•Isabelle Tame Graph Classification:

Gertrud Bauer, Tobias Nipkow,

•Chief Programmer: Alexey Solovyev,

• Nonlinear inequalities: Victor Magron, Sean 

McLaughlin, Roland Zumkeller,

• Linear Programming: Steven Obua,

• Microsoft Azure Cloud support: Daron Green, Joe 

Pleso, Dan Synek, Wenming Ye,

•Chief Formalizer: Hoang Le Truong,

• Text formalization: Jason Rute, Dang Tat Dat, Nguyen 

Tat Thang, Nguyen Quang Truong, Tran Nam Trung, 

Trieu Thi Diep, Vu Khac Ky, Vuong Anh Quyen,

•Student Projects: Catalin Anghel, Matthew Wampler-Doty, 

Nicholas Volker, Nguyen Duc Tam, Nguyen Duc Thinh, Vu 

Quang Thanh,

•Proof Automation: Cezary Kaliszyk, Josef Urban,

•Editing: Erin Susick, Laurel Martin, Mary Johnston,

•External Advisors and Design: Freek Wiedijk, Georges Gonthier, 

Jeremy Avigad, Christian Marchal,

•Institutional Support: NSF, Microsoft Azure Research, William 

Benter Foundation, University of Pittsburgh, Radboud University, 

Institute of Math (VAST), VIASM.

Hales et al. 2004-2014:
Flyspec project- Formal verification

in HOL Light proof assistant

Thomas Hales
1958-



Conclusions

• Graph coloring, with or without proofs, is 
widespread in Computer Science

• Computer-checked proofs are widespread, and 
important, in Computer Science

• Computer-checked proofs are even becoming 
important in Mathematics
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