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Can it really be a proof if you
can’'t check it by machine?




Alfred B. Kempe, 1849-1922

Barrister of ecclesiastical law; mathematician

In 1876, Kempe’s Universality Theorem: for an
arbitrary algebraic plane curve, a linkage can be
constructed that draws the curve.

Oops! There was a bug in the proof.

Finally proved in 2002 by Michael Kapovich and John J. Millson



Alfred B. Kempe, 1849-1922

Barrister of ecclesiastical law; mathematician

In 1879, proof of the 4-color theorem: every
planar graph can be colored using at most 4
colors.

(Any nodes connected
by an edge must have
different colors.)



Alfred B. Kempe 1879
6-color theorem: /
Every planar graph is 6-colorable.

5-color theorem: /
Every planar graph is 5-colorable.

4-color theorem:
Every planar graph is 4-colorable. x

Percy ]. Heawood
found a bug in the proof, 1890
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Alfred B. Kempe 1879

6-color theorem: /
Every planar graph is 6-colorable.

Proof:
1. Every planar graph has at least one node of degree <6

Y-

(by Euler’s polyhedron formula): V—E+F =2, averagedegree <6

2. If you remove one node from a planar graph,
what remains is a planar graph.
3. This leads to an algorithm for coloring graphs...



Kempe's graph-coloring algorithm
To 6-color a planar graph:

1. Every planar graph has at least one vertex of
degree < 5.

2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4. Put the vertex back. Itis adjacent to at most
5 vertices, which use up at most 5 colors from
your “palette.” Use the 6™ color for this vertex.









Now, by induction, suppose
we could color the rest of
the graph
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Now, by induction, suppose
we could color the rest of

the graph

We can surely
find a color for c

Find a color for this
node that’s not already
used in an adjacent node 11




Why did this work?
Because when we removed
each node, at that time it had degree < 6. e

So when we put it back, it’s adjacent
to at most 5 already-colored no

&)
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Kempe's 4-coloring algorithm

To 4-color a planar graph:
1. Find a vertex of degree < 5 (there must be one)
2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4. Put the vertex back.
\‘\ These cases: easy; you can find
— a color not used by an adjacent node.

% This case: use the method of “Kempe chains”

¥ This case ...
13




Suppose you are 4-coloring this graph:

14




Kempe's 4-coloring algorithm

To 4-color a planar graph:
1. Find a vertex of degree < 5 (there must be one)
2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4.. Put the vertex back.

o _ \‘\ \T\ These cases: easy /
% This case: use “Kempe chains” /

This case: use “simultaneous Kempe chains”
15




Kempe's 4-coloring algorithm

To 4-color a planar graph:
1. Find a vertex of degree < 5 (there must be one)
2. Remove this vertex.

3. Color the rest of the graph with a recursive
call to Kempe’s algorithm.

4.. Put the vertex back.

o _ \‘\ \T\ These cases: easy /
% This case: use “Kempe chains” /

¥ “simultaneous Kempe chains”

Heawood 1890



Kempe 1879

6-color thm

Every planar graph
contains at least 1 of
these configurations:

s
Y-

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!

Kempe 1879

5-color thm

Every planar graph
contains at least 1 of
these configurations:

s
Y-

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!
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Wernicke, Franklin,
Lebesgue, Heesch

of “reducible
configurations”

would prove
the 4-color
theorem

Heinrich Heesch
1906-1995

~1970: [paraphrase]
| estimate that computers
will be powerful enough someday,
to find an unavoidable set of
perhaps 10,000 reducible
configurations

4-color thm

Every planar graph
contains at least 1 of

«“unavoidabl GD these configurations:

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!



Appel and Haken

1972-1974: Let’s use computers to
analyze unavoidable sets, and estimate,

(1) how many configurations might be
in an unavoidable set of reducible
configurations?

(2)in what year will future computers
be fast enough to calculate this?

20



THE EXISTENCE OF UNAVOIDABLE SETS OF
GEOGRAPHICALLY GOOD CONFIGURATIONS!

BY
K. APPEL AND W. HAKEN

Abstract

A set of configurations is unavoidable if every planar map contains at least
one element of the set. A configuration ¥ is called geographically good if
whenever a member country M of € has any three neighbors N,, N,, N; which
are not members of ¥ then N, N,, N; are consecutive (in some order) about M.

The main result is a constructive proof that there exist finite unavoidable sets
of geographically good configurations. This result is the first step in an investi-
gation of an approach towards the Four Color Conjecture.

Received December 20, 1974.
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Appel and Haken

1974: and the estimate is,
(1) about 2000 configurations
(2)in the year 1972!

IBM System/370 Model 168, 1972
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Appel and Haken and Koch

1974-1976: Calculate

(1) an unavoidable set of 1900 configs
(using a version of Heesch's
“discharging” procedure)

(2) reducibility proofs for each config.,

using various reducibility algorithms
(implemented with the assistance of C.S. PhD
student John Koch)
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Teletype model ASR-33

110 bits per second
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Kempe 1879

6-color thm

Every planar graph
contains at least 1 of
these configurations:

s

(degree 4) (degree 1)

(a degree 5 node)

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!

Kempe 1879

5-color thm

Every planar graph
contains at least 1 of
these configurations:

s
Y-

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!

Appel and Haken 1976

4-color thm

Every planar graph
contains at least 1 of
these configurations:

i

s
20 # oo 10 # 002 10 # 003 20 # oud

(and 1900 more)

“reduce”: Replace that
configuration with a
smaller config., color
the remaining graph,
put the node back,
you can find a color
for the node!



FOUR COLORS
SUFFICE




My own contribution to the 4CT proofreading:

None.

EVERY PLANAR MAF IS5 FOUR COLORABLE. PART 1
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Which part don’t you believe?

“Haken’s son Armin, by then a graduate student at ...
Berkeley, gave a lecture on the four-colour problem....
At the end, the audience split into two groups: the over-
forties could not be convinced that a proof by computer
was correct, while the under-forties could not be
convinced that a proof containing 700 pages of hand
calculations could be correct.”

Four
Colqrs
Suffice

the

Map

Problem

Was

Solved

Robin Wilson
[N Re R S e SR e B

Princeton University Press 2002
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1850
1880

1904

1920

1960

1976

1996

2006

Guthrie

Kempe

Heawood

Wernicke “unavoidable set”
irkho

Heesch “discharging” to

compute unavoidable set

Appel, Haken “Every planar map

IS 4-colorable”
improved prooD
same basic recipe

30

Robertson, Sanders,
Seymour, Thomas

Gonthier



1850
1880

1904

1920

1960

1976

1996

2006

_ 1700 Leibniz
Guthrie

1850 Babbage
Kempe 1920 Hilbert mathematics?

Heawood 1930 Gé’)d-el ~—Proof checking: yes
_ Turing Proving: not quite
Wernicke
Birkhoff
In particular, a short
Heesch

theorem statement
might have a very

Appel, Haken long proof.

Robertson, Sanders,

Seymour, Thomas Yes, we noticed!

Gonthier
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1700 Leibniz

1850 Guthrie 1850 Babbage
1880 Kempe 1920 Hilbert mathematics?

Heawood 1930 Godel ———7Proof checking: yes
Turing Proving: not quite

1904 Wernicke
1950 von Neumann Let’s build
1920 Birkhoff 1960 1BM those computers!

1960
Heesch __
= Thank you!
1976 Appel, Haken —_—
1996 Robertson, Sanders,
Seymour, Thomas
2006 Gonthier
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1850
1880

1904

1920

1960

1976

1996

2006

1700 Leibniz

Guthrie 1850 Babbage
Kempe 1920 Hilbert mathematics?

Heawood 1930 Godel ———7Proof checking: yes
Turing Proving: not quite

Wernicke
1950 von Neumann Let’s build
Birkhoff 1960 IBM those computers!
Optimizing John Robin Proof
Heesch compilers Cocke 1970s Milner~_ Assistants

Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier
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1850
1880

1904

1920

1960

1976

1996

2006

Guthrie
Kempe

Heawood

Wernicke

Birkhoff

Heesch

Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

1700 Leibniz
1850 Babbage
1920 Hilbert

1930 Godel

Turing
1950 von N/
1960 IBM

John

Cocke 1925-2002
IBM Research
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Procedure P (k, j)
g :=mem|j+12]
h:=k-1

f:=gxh

e := mem [j+8]
m := mem[j+16]

b := mem|f]
c:=e+8
d:=c
k:=m+4

j =
return (d, k, j)

registers

ri

r2
r3

r4

D = p—

OIS UT A WDN PO

memory
K
h
m
b
C
d
35




1850
1880

1904

1920

1960

1976

1996

2006

1700 Leibniz

Guthrie 1850 Babbage
Kempe 1920 Hilbert
Heawood 1930 G('jd.el
_ Turing

Wernicke 1950 von N<Vd
Birkhoff 1960 IBM

John
Heesch Cocke 1925-2002

IBM Research

, "
1977: ‘
Hmm, this 4-color

theorem is interesting.
John, ask Gregory to try |

Kempe’s coloring algorithm Ashok Chandra Gregory Chaitin

in the register allocator (1948-2014) (1947-)
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One of the most influential papers in all of
computer science

| was recruited to do a coloring register allocator by John Cocke,
IBM's greatest computer architect, who needed it for his RISC project.

LIAn miantinnad that ArhAl, I/ PhanAva AlaAa A+ IDRMN DA~AAra lh A+ that +inAAn
Computer Languages Yol 6, pp. 47 10 57, 1981 0096-0551 81.010047-11502.00.0
Printed in Great Britain. All rights reserved Copyright © 198t Pergamon Press Lid

REGISTER ALLOCATION VIA COLORING

GREGORY J. CHAITIN, MARC A. AUSLANDER, ASHOK K. CHANDRA, JOHN COCKE,
MARTIN E. HoPKINS and PETER W. MARKSTEIN

[BM T. J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.
(Received 9 October 1980)

Abstract—Register allocation may be viewed as a graph coloring problem. Each node in the
graph stands for a computed quantity that resides in a machine register, and two nodes are
connected by an edge if the quantities interfere with each other, that is, if they are simultaneously
live at some point in the object program. This approach, though mentioned in the literature, was
never implemented before. Preliminary resuilts of an experimental implementation in a PL/]
optimizing compiler suggest that global register allocation approaching that of hand-coded
assembly language may be attainable.



Register Allocation

Procedure P (K, j)
g := mem|j+12]
h:=k-1

f:=gxh

e := mem [j+8]
m := mem|[j+16]

b := mem|f]
c:=e+8
d:=c
k:=m+4
ji=b

return (d, k, j)

Live ranges

A

0 4+ [

AN

c /"

e

—_

b Fe™
dk
BEEEE

Interferences

(some not shown)

Chaitin et al 1981

Interference
Graph

figure 11.1 from Modern Compiler Implementation in ML,
Andrew W. Appel, Cambridge University Press 1998
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Chaitin’s

Heuristic hack of Kempe's algorithm

To mostly K-color a graph (whether planar or not!)

[s there a vertex of degree < K ?
If so:

Remove this vertex.
Color the rest of the graph with a recursive call to the algorithm.

Put the vertex back. It is adjacent to at most K-1 vertices. They use (among
them) at most K-1 colors. That leaves one of your colors for this vertex.

If not:
Remove this vertex.
Color the rest of the graph with a recursive call.

Put the vertex back. Itis adjacent to = K vertices. How many colors do these
vertices use among them?

If <K: thereisan unused color to use for this vertex
If >K:

39



Briggs’s version of Chaitin’s

Heuristic hack of Kempe's algorithm

To mostly K-color a graph (whether planar or not!)

[s there a vertex of degree < K ?
If so:

Remove this vertex.

What?
Are we allowed to do that?

Color the rest of the graph with a

Put the vertex back. Itis adja
them) at most K-1 colors. Th

If not:
Remove this vertex.

Yes!
This is an algorithm to
“mostly K-color” a graph.

Color the rest of the graph with a rg

Put the vertex back. Itis adjacer

vertices use among them?
If <K: thereisan unuse . color to use for this vertex

If > K: leave this vertex uncolored.
40









_ Push node c on
Stack: ¢ the stack 43



Removing c
lowers the degree
of nodes b and m;
that will be helpful later!

Stack: c
44



This node
has degree < 3;
remove it!

Stack: ¢

45



This node
has degree < 3;
remove it!

Stack: hc 46



This node
has degree < 3;
remove it!

Stack: hc .









This node
has degree < 3 ;
remove it!

Stack: kghc o



This node
has degree < 3;
remove it!

Stack: dkghc
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This node
has degree < 3;
remove it!

Stack: jdkghc ”



This node
has degree < 3 ;
remove it!

Stack: fjdkghc 3



This node
has degree < 3;
remove it!

Stack: efjdkghc e



This node
has degree < 3;
remove it!

Stack: befjdkghc -



Stack: mbefjdkghc
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Find a color for this
node that’s not already
used in an adjacent node

Stack: mbefjdkghc -



Find a color for this
node that’s not already
used in an adjacent node

Stack: mbefjdkghc
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Find a color for this
node that’s not already
used in an adjacent node

Stack: mbefjdkghc
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Find a color for this W
node that’s not already

used in an adjacent node /

Stack: mbefjdkghc 60



Find a color for this
node that’s not already
used in an adjacent node

Stack: mbefjdkghc
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Find a color for this
node that’s not already
used in an adjacent node

Stack: mbefjdkghc
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Find a color for this
node that’s not already
used in an adjacent node

Stack: mbefjdkghc
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Find a color for this
node that’s not already
used in an adjacent node

Stack: mbefjdkghc
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Find a color for this

node that’s not already

Stack: mb-efHdkghc used in an adjacent node 66




Why did this work?

Because (usually) when we removed
each node, at that time it had degree < 3.

So when we put it back, it’s adjacent H
to at most 2 already-colored no

&)
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Kempe 1879 graph coloring algorithm
Chaitin etal 1981 register allocation by coloring

Chaitin 1982: spilling (“leave some nodes uncolored”)
Briggs et al. 1984: coalescing + improved spilling

68



Procedure P (K, j)
g :=mem|j+12]
h:=k-1

f:=gxh

e := mem [j+8]
m := mem|[j+16]
b := mem|f]
c:=e+8

[f these nodes can be colored the same color;
then you can delete the move instruction

A 4

A

A 4

A

Live ranges

gth

f

b dc

K

4

»

Interference
Graph

figure 11.1 from Modern Compiler Implementation in ML,
Andrew W. Appel, Cambridge University Press 1998
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Kempe 1879 graph coloring algorithm

Chaitin et al. 1981 register allocation by coloring
Chaitin 1982: spilling (“leave some nodes uncolored”)
Briggs et al. 1984: coalescing + improved spilling

& . “Briggs reduction:”
@eﬁ‘,-" Coalesce a move edge c-d, if
S (1) no interference edge c-d

(2) coalesced node cd has degree <K

70



Kempe 1879 graph coloring algorithm

Chaitin et al. 1981 register allocation by coloring
Chaitin 1982: spilling (“leave some nodes uncolored”)
Briggs et al. 1984: coalescing + improved spilling

“Briggs reduction:”

Coalesce a move edge c-d, if

(1) no interference edge c-d

(2) coalesced node cd has degree <K

71



Kempe
Chaitin ]

1879  graph coloring algorithm

1981 register allocation by coloring

Chaitin !
Briggs e

1982: spilling (“leave some nodes uncolored”)

tal. 1984: coalescing + improved spilling

L. George & A.W. Appel 1996: Iterated Register Coalescing

Interleave Briggs reductions
with Kempe reductions

but also:

“George reduction:”

Coalesce a move edge c-d, if

(1) no interference edge c-d

(2) neighbors(d) < neighbors(c) -,



ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996, Pages 300-324.

lterated Register Coalescing

LAL GEORGE
Lucent Technologies, Bell Labs Innovations
and

ANDREW W. APPEL

Princeton University

An important function of any register allocator is to target registers so as to eliminate copy
instructions. Graph-coloring register allocation is an elegant approach to this problem. If the
source and destination of a move instruction do not interfere, then their nodes can be coalesced
in the interference graph. Chaitin’s coalescing heuristic could make a graph uncolorable (i.e.,
introduce spills); Briggs et al. demonstrated a conservative coalescing heuristic that preserves
colorability. But Briggs's algorithm is foo conservative and leaves too many move instructions in
our programs. We show how to interleave coloring reductions with Briggs’s coalescing heuristic,
leading to an algorithm that is safe but much more aggressive.

73



1850
1880

1904

1920

1960

1976

1996

2006

Guthrie
Kempe
Heawood

Wernicke

Birkhoff

Heesch

K. Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

4-color theorem

1700 Leibniz
1850 Babbage
1920 Hilbert

1930 Godel
Turing
1950 von Neumann
_-1960 IBM

Cocke
» 1980 Chaitin
Briggs

1996 L. George
& A. Appel

v

computing
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1850
1880

1904

1920

1960

1976

1996

2006

Guthrie

Kempe

Heawood
Wernicke

Birkhoff

K. Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gonthier

4-color theorem

1700 Leibhiz
1850 Babbyge
1920 Hilpber

1930 Godel Church
Turing

1950 vorl Neumann
- 1960 IBM

Cocke
» 1980 Chaitin
Briggs

1996 L. George
& A. Appel

v

computing




Program verification

e F \ L
. — i Py i X
7 ! 1 0
/ e
> & / /

Edsger Dijkstra Robert Floyd Tony Hoare David Gries
1930-2002 1936-2001 1934- 1939-

Proofs (written by hand, checked by hand) about programs
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1978

Edinburgh LCF, the first Proof Assistant

Construct proofs in a “proof language”
by hand (like programs).

Proof-checker program (“kernel”)
checks each step of the proof as you
build it.

3 e . Robin Milner
Tactic” language permits you to 1934.2010

write programs to fill in the trivial
parts of the proofs.

77



Proving in a proof assistan

File Edit View Mavigation TryTactics Templates Queries Tools Compile Windows Help
EX? T LLEO >0
B scratch
Inductive nat :=. 1 subgocal
O: nat | S: nat -> nat. (1/1)
forall a b ¢ : nat,
Fixpoint add (a b: nat) : nat := add a (add b ¢) = add (add a b) c
match a with
| O =>Db
| S a' => S (add a' b)
end.
Theorem add associative:
forall a b ¢, .
add a (add b ¢) = add (add a b) c.
Proof. Messages |~ | Enors [+] Jobs [ /]
}” 78
Ready, proving add_associative Line: 29 Char: 1 Cong is ready 0/



= Coglde — O *
File Edit View Mavigation TryTactics Templates Queries Tools Compile Windows Help

EX P +TDTFLHFO 50

B scratch
Inductive nat :=. L subgoal
O: nmat | S: nat -> nat. a, b, ¢ : nat
(1/1)
Fixpoint add (a b: nat) : nat := add a (add b ¢) = add (add a b) c
match a with
| O =>Db
| S a' => S (add a' b)
end.
Theorem add associative:
forall a b ¢, .
add a (add b ¢) = add (add a b) c.
Proof. Messages |~ | Enors [+] Jobs [ /]
intros.
v 79

Ready, proving add_associative Linee 14 Char: & Cog is ready 0/0




 Coglde

File Edit View Mavigation Try Tactics Templates Queries Tools Compile Windows Help

HX? T L&IO >0
E*scratch*

Inductive nat :=.

O: nat | S: nat -> nat.
Fixpoint add (a b: nat) nat :=
match a with
| O =>Db
| S a' = S (add a' b)
end.

Theorem add associative:
forall a b ¢, .

add a (add b ¢) = add (add a b) c.

Proof.

intros.

induction a.

* simpl. reflexivity.

* simpl.
reflexivity.

rewrite IHa.
reflexivity.

Qed.

Ready, proving add_associative

- O
2 subgoals
b, c nat

(1/2)
add O (add b ¢) = add (add O b) c

(2/2)
add (S a) (add b ¢) = add (add (S a) b) c

Messages |~ | Errors lobs

80

Line: 15 Char: 13 Coq is ready 0/




Proving in a proof assistant

 Coglde - O

File Edit Niew MNavigation TryTactics Templates Queries Teools Compile Windows Help

EBX? DT LFO >0

B scratch*
Inductive nat :=. 1 subgoal

O: nat | S: nat -> nat. b, ¢ : nat

(1/1)

Fixpoint add (a b: nat) : nat := add b ¢ = add b ¢

match a with

| O =D

| S a' => S (add a' b)

end.

Theorem add associative:
forall a b ¢, .
add a (add b ¢) = add (add a b) c.
Proof. Messages |~ | Errors Ju:-hs
intros.
induction a.
* simpl.| reflexivity.
* simpl.
reflexivity.
rewrite IHa.
reflexivity.
Qed.

81

Ready, proving add_associative Line: 16 Char 9 Coq is ready 0/



- Coglde
File Edit View Mavigation TryTactics Templates Queries Tools Compile Windows Help

EX P +TDTFLHFO 50

(1/1)

B scratch
Inductive nat :=. 1 subgoal
O: nmat | S: nat -> nat. a, b, c nat
IHa add a (add b ¢) = add (add a b) c

Fixpoint add (a b: nat) nat :=

match a with add (S a) (add b ¢) = add (add (S a) b) c

| O =>Db

| S a' => S (add a' b)

end.

Theorem add associative:
forall a b ¢, .
add a (add b c) =

Proof.

intros.

induction a.

* simpl. reflexivity.

*|simpl.

reflexivity.
rewrite IHa.
reflexivity.

Qed.

add (add a b) c.
Messages |~ | Errors lobs

Ready, proving add_associative

Line: 17 Char: 2

Cog is ready

82
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= Coglde — O

File Edit View Mavigation TryTactics Templates Queries Tools Compile Windows Help
EX? T LLEO >0
B scratch
Inductive nat :=. 1 subgoal
O: nmat | S: nat -> nat. a, b, ¢ : nat
IHa : add a (add b ¢) = add (add a b) c
Fixpoint add (a b: nat) : nat := (1/1)
match a with S (add a (add b ¢)) = S (add (add a b) c)
| O =>Db
| S a' => S (add a' b)
end.

Theorem add associative:
forall a b ¢, .
add a (add b ¢) = add (add a b) c.

Proof. Messages | » | Errors |- | Jobs

intros.

induction a. Error:

* simpl. reflexivity. In environment

* simpl.| a, b, ¢ : nat
reflexivity. THa : add a (add b ¢) = add (add a b) c
rewrite IHa. Unable to unify "S (add (add a b) c)" with
reflexivity. "S (add a (add b c))".

Qed.
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Proving in a proof assistant :

File Edit Niew MNavigation TryTactics Templates Queries Teools Compile Windows Help

EBX? DT LFO >0

B scratch*
Inductive nat :=. 1 subgoal

O: nat | S: nat -> nat. a, b, ¢ : nat

IHa : add a (add b ¢) = add (add a b) c

Fixpoint add (a b: nat) : nat := (1/1)

match a with S (add (add a b) ¢) = S (add (add a b) c)

| O =D

| S a' => S (add a' b)

end.
Theorem add associative:

forall a b ¢, .

add a (add b ¢) = add (add a b) c.
Proof. Messages | » | Errors |~ | Jobs | -

intros.
induction a.
* simpl. reflexivity.
* simpl.
rewrite IHa.
reflexivity.
Qed.
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= Coglde — O *

File Edit View Mavigation TryTactics Templates Queries Tools Compile Windows Help

EHX P+t TFLIOG 0
E*Sc ratch™

Inductive nat :=.
O: nat | S: nat -> nat.

Fixpoint add (a b: nat) : nat :=
match a with

| O =>Db

| S a' => S (add a' b)

end.

Theorem add associative:
forall a b ¢, .
add a (add b ¢) = add (add a b) c.
Proof. Messages || Ermors [+| Jobs [
intros. add associative is defined
induction a.
* simpl. reflexivity.
* simpl.
rewrite IHa.
reflexivity.
QedJ
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What's it good for?

Robin Milner’s observation (along with the thousands of
people who have worked in this field after 1978, including me):

Machine-checked proofs (and proof assistants)

are really good for theorems about computer
programs/’
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Landmarks of program verification

a personal selection

Andrew Appel Xavier Leroy Gerwin Klein Zhong Shao
1960- 1968- 1975- 1968-
Foundational CompCert seL4 CertiKOS

Proof-Carrying Code optimizing C compiler operating system operating system

2005 2006 2013 2015
Verified
Software Toolchain
2014
Verified SHA/HMAC
cryptographic authentication 87
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1850
1880

1904

1920

1960

1976

1996

2006

Guthrie
Kempe
Heawood

Wernicke

Birkhoff

7
Heesch 4

K. Appel, Haken

Robertson, Sanders,
Seymour, Thomas

Gogthier

4-color theorem

1700 Leibhiz

1850 Babbyge

Cocke

# 1980 Chaitin
Briggs

1996 L. George
& A. Appel

v

computing

1970 Dijkstra, Floyd, Hoare

1977 Milner

1990s numerous

215t century
more numerous!

software
verification



Which part don’t you believe?

“Haken’s son Armin, by then a graduate
student at ... Berkeley, gave a lecture on
the four-colour problem.... Atthe end,
the audience split into two groups: the
over-forties could not be convinced that
a proof by computer was correct, while
the under-forties* could not be
convinced that a proof containing 700
pages of hand calculations could be
correct.”

*By now that would be, “people under 80”
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2005 (see also Notices of the AMS 2008)

A computer-checked proof of the Four Colour Theorem

Georges Gonthier
Microsoft Research Cambridge

This report gives an account of a successful formalization of the proof of the Four
Colour Theorem, which was fully checked by the Coq v7.3.1 proof assistant [13].
This proof 1s largely based on the mixed mathematics/computer proof [26] of
Robertson et al, but contains original contributions as well. This document is
organized as follows: section 1 gives a historical introduction to the problem and
positions our work 1n this setting; section 2 defines more precisely what was proved;
section 3 explains the broad outline of the proof; section 4 explains how we exploited
the features of the Coq assistant to conduct the proot, and gives a brief description of
the tactic shell that we used to write our proof scripts; section 5 1s a detailed account
of the formal proof (for even more details the actual scripts can be consulted); section
6 1s a chronological account of how the formal proof was developed; finally, we draw
some general conclusions n section 7.

Georges Gonthier

1962-
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“Trusted base:” 141 lines

Definition real_model := ... 100 lines of Coq axiomatizing real numbers...

Definition map : Type :=
Definition simple_map: Type — Prop :=
Definition map_colorable: N — map — Prop :=

40 lines of
elementary topology

Theorem four_color:
V R:real_model, Vm : map R, simple_map m — map_colorable 4 m.
Proof.
... 60,000 lines of Coq ...
Qed.
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1880

1904
1920

1960

1976

1996

2005

Robertson)Sanders,
Seymour,

-

1700 Leibhiz
1850 Babbyge
1920 Hilber

1930 Godel C
Turing

1950 vo
_-1960 IB

Neumann

Cocke
™ 1980 Chaitin
Brilggs

1996 L. Gporge
&AvAppel
computing

1977 MNner

1990s numerous

Gonthier 93
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Formal Verification of Coalescing
Graph-Coloring Register Allocation

Sandrine Blazy!, Benoit Robillard?, and Andrew W. Appel?

I TRISA - Université Rennes 1
2 CEDRIC - ENSIIE

3 Princeton University

19" European Symposium on Programming, 2010

Abstract. Iterated Register Coalescing (IRC) 1s a widely used heuristic
for performing register allocation via graph coloring. Many implementa-
tions in existing compilers follow (more or less faithfully) the imperative
algorithm published 1 1996. Several mistakes have been found 1n some
of these implementations.

In this paper, we present a formal verification (in Coq) of the whole
IRC algorithm. We detail a specification that can be used as a refer-
ence for IRC. We also define the theory of register-interference graphs;
we 1mplement a purely functional version of the IRC algorithm, and we
prove the total correctness of our implementation. The automatic extrac-
tion of our IRC algorithm mmto Caml yields a program with competitive
performance. This work has been integrated into the CompCert verified
compiler.
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In mathematics, as well

Kepler conjecture (1611):
Face-centered cubic is
densest possible sphere packing

Hales proof (1998):

5000 planar graphs,
each with a computerized
nonlinear optimization calculation

Referees: we're 99% sure it’s correct

Hales et al. 2004-2014:
Flyspec project- Formal verification
in HOL Light proof assistant

. e/
*Project Director: Thomas Hales
*Project Managers: Ta Thi Hoai An, Mark AdIrbsomaS Hales
HOL Light libraries and support: John Harrison,  1958-
Isabelle Tame Graph Classification:
Gertrud Bauer, Tobias Nipkow,
*Chief Programmer: Alexey Solovyev,
* Nonlinear inequalities: Victor Magron, Sean
McLaughlin, Roland Zumkeller,
* Linear Programming: Steven Obua,
*  Microsoft Azure Cloud support: Daron Green, Joe
Pleso, Dan Synek, Wenming Ye,
*Chief Formalizer: Hoang Le Truong,
«  Text formalization: Jason Rute, Dang Tat Dat, Nguyen
Tat Thang, Nguyen Quang Truong, Tran Nam Trung,
Trieu Thi Diep, Vu Khac Ky, Vuong Anh Quyen,
*Student Projects: Catalin Anghel, Matthew Wampler-Doty,
Nicholas Volker, Nguyen Duc Tam, Nguyen Duc Thinh, Vu
Quang Thanh,
*Proof Automation: Cezary Kaliszyk, Josef Urban,
*Editing: Erin Susick, Laurel Martin, Mary Johnston,
*External Advisors and Design: Freek Wiedijk, Georges Gonthier,
Jeremy Avigad, Christian Marchal,
sInstitutional Support: NSF, Microsoft Azure Research, William
Benter Foundation, University of Pittsburgh, Radboud Universit)?6
Institute of Math (VAST), VIASM.



Conclusions

» Graph coloring, with or without proofs, is
widespread in Computer Science

 Computer-checked proofs are widespread, and
important, in Computer Science

» Computer-checked proofs are even becoming
important in Mathematics
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