
Mathematics 500 — Abstract Algebra I
Fall 2022

(11–12 MWF, in 347 Altgeld)

Instructor: Charles Rezk
Office: 257 CAB
Email: rezk@illinois.edu
Webpage: http://faculty.math.illinois.edu/~rezk/

Homework: Weekly homework assignments. (50% of grade.)

Tests: Two midterms (10% each) and a final (30%), in class. The final exam
will resemble a Comp Exam.

Texts: The primary text will be:

• Dummit & Foote, Abstract Algebra, (3rd edition). Wiley, ISBN 978-0-
471-43334-7.

Course topics: The course will cover approximately chapters 1–8, and 10–
14 of Dummit and Foote. It will be assumed that students are familiar with
basic material from an undergraduate algebra class, such as in Math 417
(this material will be reviewed). We will cover the topics on the standard
syllabus for 500, including:

• Free groups and presentations of groups.

• Group actions.

• The Sylow theorems.

• Basic ring theory.

• Basic module theory.

• Classification of modules over a PID.

• Fields and field extensions.

• Galois theory.

mailto:rezk@illinois.edu
http://faculty.math.illinois.edu/~rezk/


INTRODUCTION TO

GEOMETRIC GROUP THEORY

Igor Mineyev. Math 503, Fall 2022.

https://faculty.math.illinois.edu/~mineyev/class/22f/503/

Geometric group theory is not a subject in itself; it is rather the place where various areas

of mathematics interact: algebra, topology, geometry, analysis, computational methods, and

more. Here is the tentative list of topics that I intend to cover in this course; this might be

modified somewhat as we proceed.

• Cayley graphs, the word metric, groups as metric spaces, quasiisometry.

• One-dimensional things: Free groups and their subgroups, their descriptions via Stallings’

graphs, Schreier’s subgroup theorem, Nielsen transformations, automorphisms of free groups.

• Group actions on trees, free products, ping-pong lemma, free products with amalgamations,

HNN-extensions, graphs of groups.

• Two-dimensional things: Groups presentations by generators and relators, van Kampen

diagrams, van Kampen theorem, isoperimetric function, algorithmic problems in group

theory.

• Examples of quasiisometry invariants: growth of finitely generated groups, ends, isoperimet-

ric functions, amenability, solvability of the word problem, asymptotic cones, hyperbolicity.

• Multi-dimensional things: Word hyperbolic groups and spaces, their numerous definitions

and properties, examples, the ideal boundary, quasiconformal and conformal structures on

the ideal boundary, cubical complexes, . . .

No textbook is required. The following sources might be helpful, among many other.

• Magnus, Karras, Solitar. Combinatorial group theory.

• Lyndon, Schupp. Combinatorial group theory.

• Jean-Pierre Serre. Trees.

• Ghys, Haefliger, Verjovsky. Group theory from a geometrical viewpoint.

• Collins, Grigorchuk, Kurchanov, Zieschang. Combinatorial group theory and applications

to geometry.

• John Meier. Groups, graphs and trees.

• Gilbert Baumslag. Topics in combinatorial group theory.

• Bridson, Haefliger. Metric spaces of non-positive curvature.



FALL 2022
MATH 514

COMPLEX ALGEBRAIC GEOMETRY

Instructor: Sheldon Katz

Time: MWF 2–2:50

Text: C. Voisin, Hodge Theory and Complex Algebraic Geometry, I

Prerequisite: Math 448 or equivalent, or permission of the instructor

This course develops the theory of complex manifolds, with particular atten-
tion to compact Kähler manifolds, which include complex projective varieties.
In the process, a foundation is established for further study in complex ge-
ometry and algebraic geometry. Geometric methods frequently come to the
forefront in a complex analytic approach.

The course will include most of the first two chapters of the text, plus some
related material from other sources. Selected topics from Chapters III and
IV will be included as time permits.

Topics covered include complex manifolds, holomorphic vector bundles, Her-
mitian differential geometry, Hodge theory for Kähler manifolds, Dolbeault
cohomology, and Hodge theory for Kähler manifolds. If time allows, applica-
tions will be given, including Hodge structures, the Lefschetz (1, 1) theorem,
and the Kodaira embedding theorem.

A complex manifold of dimension 1 is a Riemann surface, so prior exposure to
Math 510 will help, but is not a prerequisite. However, prior familiarity with
complex analysis at least at the advanced undergraduate level is essential.



 

* 518 Differentiable Manifolds I 
 
Differentiable manifolds are a class of spaces that includes Euclidean 
spaces, smooth curves and surfaces in 3-space, higher-dimensional 
generalizations such as the n-dimensional spheres, and infinitely much 
more. Manifolds locally look like open sets in Euclidean space, but 
they may have a nontrivial global topology. A differentiable manifold 
is one where, at least locally, we can "do multivariable calculus" in 
a meaningful way. This local structure has consequences for the global 
topology. Even for Euclidean spaces (whose global topology is trivial) 
the theory of manifolds provides a new perspective on geometry that 
vastly generalizes traditional Euclidean geometry in multiple 
directions. 
 
The foundations of differentiable manifolds are not particularly 
simple, but they support a theory that has a lot of intuitive 
appeal. One goal of this course is to convey both the technical 
foundations and the intuitive picture. 
 
The topics for this course are: 
 
- Foundations of Differentiable Manifolds: Differentiable manifolds 
   and differentiable maps. Tangent space and differential. Immersions 
   and submersions. Embeddings and Whitney's 
   Theorem. Foliations. Quotients. 
- Lie Theory: Vector fields and flows. Lie derivatives and Lie 
   brackets. Distributions and Frobenius' Theorem. Lie groups and Lie 
   algebras. The Exponential map. Transformation groups. 
- Differential Forms: Differential forms and Tensor 
   fields. Differential and Cartan Calculus. Integration on manifolds 
   and Stokes Formula. 
 
The lectures will follow Prof. Rui Loja Fernandes' lecture notes on 
Differential Geometry. Other recommended textbooks are 
- Introduction to Smooth Manifolds by John M. Lee. 
- A Comprehensive Introduction to Differential Geometry by Michael Spivak. 
 
Grades will be based on homework (25%), a midterm exam (25%), and a 
final exam (50%). 



Mathematics 526 — Algebraic Topology II
Fall 2022

(1–2 MWF, in 447 Altgeld)

Instructor: Charles Rezk
Office: 257 CAB
Email: rezk@illinois.edu
Webpage: http://faculty.math.illinois.edu/~rezk/

Course description:
This is second semester course in algebraic topology. In the first semester (Math 525), invariants
called homology groups were constructed in terms of the singular chain complex of a space. One of
the themes of this course is thinking about the singular chain complex itself as as a kind of invariant,
from which other invariants (homology and cohomology groups, possibly with coefficients) can be
derived, as well as additional structure on them (cup products, cohomology operations).

Homework: There will be approximately six homework assignments, to be given out approximately
once every two weeks.

Prerequisites: Math 525, or instructor consent.

Texts: The primary text will be:

• Allen Hatcher, Algebraic Topology, Cambridge University Press, 2001. This book is also
available for free at
http://www.math.cornell.edu/~hatcher/

This will be supplemented with additional course notes. Other useful references include:

• Bredon, Geometry and Topology.

• Bott & Tu, Differential Forms in Algebraic Topology.

• Davis & Kirk, Lecture notes in Algebraic Topology.

• May, A Consise Course in Algebraic Topology.

Course topics:
The course will include the following topics.

• Singular cohomology.

• The cup product and the Künneth theorem.

• Cech cohomology and its relationship to singular cohomology.

• Poincaré Duality.

After this, some of the following topics may be covered, time and student interest permitting.

• Classifying spaces and characteristic classes.

• Spectral sequences and applications.

• Cohomology operations.

• Basic homotopy theory and homotopy groups.

mailto:rezk@illinois.edu
http://faculty.math.illinois.edu/~rezk/


MATH 531: ANALYTIC NUMBER THEORY, I

THE DISTRIBUTION OF PRIME NUMBERS

Kevin Ford (304 Altgeld, 265-6255, http://www.math.uiuc.edu/∼ford/)

Prime number theory has witnessed many exciting new developments in the past few years:

� The primes contain arbitrarily long arithmetic progressions (Green and Tao, 2005)

� Bounded gaps containing many primes (Zhang, Maynard, Tao 2013–2014)

� New bounds for large gaps between primes (Ford, Green, Konyagin, Maynard, Tao
2014–16)

� Every odd number greater than 5 is the sum of three primes (Helfgott, 2014)

All of these rely on analytic methods, that is, methods stemming from some kind of analy-
sis (broadly speaking, this included real analysis, complex analysis, and harmonic analysis).

Syllabus:

1. Arithmetic functions: theory of multiplicative and additive functions, Dirichlet convolu-
tion, Möbius inversion, average order of magnitude estimates. Big-O and little-o notation.
Elementary theory of the distribution of primes, estimates of Chebyshev and Mertens.

2. Study of arithmetic functions via the analytic theory of Dirichlet series, Euler products
and Perron’s inversion formula.

3. Analytic methods for counting primes and prime in progressions. Theory of the Riemann
Zeta function ζ(s) and Dirichlet L-functions L(s, χ).

4. Analytic proof of the Prime Number Theorem and the Prime Number Theorem for
Arithmetic Progressions. Importance of the location of zeros of ζ(s) and L(s, χ). Discussion
of the Riemann Hypothesis, Extended Riemann Hypothesis, and Landau-Siegel zeros.

5. The large sieve and the proof of the Bombieri-Vinogradov theorem. Consequences of the
Elliott-Halberstam conjecture.

6. As time permits, a brief “sneak preview” of other further topics in analytic number theory,
such as exponential sums, sieve methods, modular forms.

Text: Highly recommended for purchase:

H. Davenport, Multiplicative number theory, 3rd. ed, 2000.

G. Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., 2015



Math 542 Complex Variables I, Fall 2022

M. Burak Erdoğan

This is a standard introductory course in complex analysis. Topics will include:

1. Complex number system. Basic definitions; topology of the complex plane; Riemann

sphere, stereographic projection.

2. Differentiability. Basic properties; Cauchy-Riemann equations, analytic functions.

3. Elementary functions. Fundamental algebraic, analytic, and geometric properties. Basic

conformal mappings.

4. Contour integration. The Cauchy integral theorem; consequences.

5. Sequences and series. Uniform convergence; power series.

6. The local theory. Zeros, Liouville’s theorem, Maximum modulus theorem, Schwarz’s

Lemma.

7. Laurent series Classification of isolated singular points; Riemann’s theorem, the Casorati-

Weierstrass theorem.

8. Residue theory. The residue theorem, evaluation of improper integrals; argument prin-

ciple, Rouche’s theorem, the local mapping theorem.

9. The global theory. Winding number, general Cauchy theorem and integral formula;

simply connected domains.

10. Uniform convergence on compacta. Ascoli-Arzela theorem, normal families, theorems

of Montel and Hurwitz, the Riemann mapping theorem.

11. Infinite products. Weierstrass factorization theorem.

12. Runge’s theorem. Applications.

13. Harmonic functions. Basic properties; Laplace’s equation; analytic completion; the

Dirichlet problem.

Prerequisites: MATH 446 and MATH 447, or MATH 448.

Textbook: An Introduction to Complex Function Theory, B. Palka.



 

 

Math 562 (Probability II) 
 
Instructor: Renming Song 
Office: 227 CAB 
Phone number: 217 244 6604 
 
Text: Jean-Francois Le Gall : Brownian Motion, Martingales and Stochastic Calculus, 2016, Springer 
 
Course Topics: This is the second half of the basic graduate course in 
probability theory. This course will concentrate on stochastic calculus 
and its applications. In particular, we will cover, among other things, 
the following topics: Brownian motion, stochastic integrals, Ito's 
formula, martingale representation theorem, Girsanov's theorem, stochastic 
differential equations, connections to partial differential equations. If time allows, 
I will also present some applications to mathematical finance. 
 
Math 561 is a prerequisite for this course. However, if you have not taken 
Math 561, but are willing to invest some extra time to pick up the 
necessary materials from 561, you may register for this course. 
 
Grading Policy: Your grade will depend on homework assignment and a 
possible final exam. 
 



Math 564: Applied Stochastic Processes (Fall 2022)

Goals and topics

This is a graduate course on applied stochastic processes, designed for those students who are going to need
to use stochastic processes in their research but do not have the measure-theoretic background to take the
Math 561-562 sequence. Measure theory is not a prerequisite for this course. However, a basic knowledge of
probability theory (Math 461 or its equivalent) is expected, as well as some knowledge of linear algebra and
analysis. The goal of this course is a good understanding of basic stochastic processes, in particular discrete-
time and continuous-time Markov chains, and their applications. The materials covered in this course include
the following:

Fundamentals: background on probability, linear algebra, and set theory.
Discrete-time Markov chains: classes, hitting times, absorption probabilities, recurrence and
transience, invariant distribution, limiting distribution, reversibility, ergodic theorem, mixing times;
Continuous-time Markov chains: same topics as above, holding times, explosion, forward/backward
Kolmogorov equations; 
Related topics: Discrete-time martingales, potential theory, Brownian motion;
Applications: Queueing theory, population biology, MCMC.

This course can be tailored to the interests of the audience.

Weblinks

Course go.illinois.edu/math564

Grades Canvas

Discussion TBA

Logistics

Instructor Partha Dey

O!ce 35 CAB

Contact Email psdey@illinois.edu with subject "Math 564:" (Use your o!cial @illinois.edu address).

Class TR 9:30am-10:50am in TBA.

Student Hrs TBA, or by appointment. I will be happy to answer your questions in my o!ce anytime as long
as I'm not otherwise engaged.

Textbook 1. Norris: Markov Chains, Cambridge University Press, 1998;

Other Refs 2. Levin, Peres, and Wilmer: Markov Chains and Mixing Times, AMS, 2009;
3. Grimmett and Stirzaker: Probability and Random Processes, 4th Ed., OUP, 2020.

Prerequisite Math 461 (Undergraduate Probability) and MATH 447/448 (Undergraduate Analysis). 
A basic knowledge of probability theory, linear algebra and analysis is expected. Measure
theory is not a prerequisite for this course.

Grading
Policy

Homework: 60% of the course grade. Homework problems will be assigned approximately
every two weeks. I will post the assigned exercises on Canvas. You are encouraged to work
together on the homework, but I ask that you write up your own solutions and turn them in
separately. There will be few problems assigned; emphasis will be placed on clear, concise,
and coherent writing. Late homework will not be graded and credited. 

Scribe (Due one week after class): 10% of the course grade. Scribe lecture notes in LaTeX
(using the provided template) for 1 lecture. Again emphasis will be placed on clear, concise,
and coherent writing. Latex can be freely downloaded from here. The source LaTeX files for
class notes are available below.

Final exam: 30% will depend on a take home final exam. Take home final exam will be
assigned on TBA (last day of instructions) and is due on TBA.



Tentative Timeline
Week Date Due Content

1 T Aug 23 Set theory and Measure Theory basics. PDF TeX

R Aug 25 Homework 0 Probability and Random variables. PDF TeX

2 T Aug 30 Expectation and Basics of linear algebra. PDF TeX

R Sep 01 Definition of Markov chain. PDF TeX

3 T Sep 06 Properties of Markov chains. PDF TeX

R Sep 08 Homework 1 Hitting time and stopping time. PDF TeX

4 T Sep 13 Strong Markov property. PDF TeX

R Sep 15 HW1 Solution Class structure. PDF TeX

5 T Sep 20 Recurrence and Transience. PDF TeX

R Sep 22 Homework 2 Invariant distribitions. PDF TeX

6 T Sep 27 Positive recurrence and aperiodicity. PDF TeX

R Sep 29 HW2 Solution Convergence to invariant distribution. PDF TeX

7 T Oct 04 Convergence for periodic MC. PDF TeX

R Oct 06 Homework 3 Time reversal and detailed balance.PDF TeX

8 T Oct 11 Ergodic theory and Metropolis-Hastings algorithm.PDF TeX

R Oct 13 HW3 Solution Mixing time.PDF TeX

9 T Oct 18 Continuos Time Markov Chains.PDF TeX

R Oct 20 Homework 4 Construction of CTMC.PDF TeX

10 T Oct 25 Poisson Process.PDF TeX

R Oct 27 HW4 Solution Poisson Process and Birth Processes.PDF TeX

11 T Nov 01 Explosion time and Minimal Chain.PDF TeX

R Nov 03 Homework 5 Class Structure, Hitting Times, Recurrence and TransiencePDF TeX

12 T Nov 08 Martingales.PDF TeX

R Nov 10 HW5 Solution Invariant measure for CTMC.PDF TeX

13 T Nov 15 Time reversal and convergence to equilibrium.PDF TeX

R Nov 17 Homework 6 Martingale characterization.PDF TeX

14 T Nov 22 No classes. Thanksgiving break.R Nov 24

15 T Nov 29 Branching processes.PDF TeX

R Dec 01 HW6 Solution Epedemics and queueing theory.PDF TeX

16 T Dec 06 Homework 7 Brownian Motion.PDF TeX

R Dec 08 HW7 Solution No Class.



Math 580: Combinatorics; graduate course at UIUC. 

General Syllabus 

 

Lectures: Those note follow Doug West: Combinatorial Mathematics 
book, in average, one lecture notes covers about one 50 minutes 
lecture (or maybe a bit more). Note that there is some overlap 
between consecutive lectures, in order to fit material of one class 
into one file. 

Lecture I: page1, page2, page 3: Basic counting, Pigeonhole Principle, 
Words. 

Lecture II: Binomial Theorem, Pascal triangle, Basic identities of 
binomial coefficients. 

Lecture III: Delannoy numbers, Cayley formula (number of trees).  

Lecture IV: Corollaries of Cayley formula proof; Ballot theorem;  

Lecture V: Catalan numbers, Number of rooted binary trees, Number 
of triangulations, Section 2.1: Fibonacci recurrences, Number of 
deragements of permutations, basic recursion formulas,  

Lecture VI: Number of simple k-words on [n]; numbef of partitions 
of [n] into k non-empty classes; Number of permutations with k-
cycles; 2.2 Section: solution methods;  

Lecture VII: Characteristic equations, Tower of Hanoi, Number of 
regions of plane, Inhomogeneous sequences, Generating function 
method. 

https://drive.google.com/file/d/12qloTg-GZYydZeXauvwyY2XOEw7wJlqw/view?usp=sharing
https://drive.google.com/file/d/1e4bflz3jC0nulLQq3tca9tI8Q0rdAcGG/view?usp=sharing
https://drive.google.com/file/d/17oDyKGRFnSSN6xhcYdVECPqeWtjwrV36/view?usp=sharing
https://drive.google.com/file/d/1VZ45QBqxQouQyfwni1hc2QQFjD9w4S9b/view?usp=sharing
https://drive.google.com/file/d/131903KXApHVivOz-yuFREVNx20G_U1cP/view?usp=sharing
https://drive.google.com/file/d/142JjLPuHS4dwzypAq5aNPJVvs83gaIBm/view?usp=sharing
https://drive.google.com/file/d/10kv8s9D7sgZBTGRklB9SKiwhhJkhDCjo/view?usp=sharing
https://drive.google.com/file/d/1O-9_mPV26M4TumM13clmgeJqW8j_gT1b/view?usp=sharing
https://drive.google.com/file/d/1n4aWX81lcMbh5qN-URadPLu46mkmblZ6/view?usp=sharing
https://drive.google.com/file/d/19xX-LOBUbMzhG2BR_UT_0lI7q26mtkZ0/view?usp=sharing


Lecture VIII: Main Theorem of linear recurrences, Section 2.3: 
Substitution method. Chapter 3.1: Ordinary Generating functions,  

Lecture IX: Section 3.1: Ordinary Generating functions, Permutation 
statistic, Worpitzky Theorem. 

Lecture X: Worpitzky Theorem; Section 3.2: OGF Coefficients; Snake 
Oil;  

Lecture XI: Snake Oil, Section 3.3: Exponential Generating functions, 

Lecture XII: Stirling number of seconds kind; Stirling number (first 
kind); Binomial Inversion formula; Exponential Formula, Partition of 
an n-set; Permutations and Involutions;  

Lecture XIII : Number of connected graphs; Exponential Formula; 
Partitions of an n-set; Permutations and Involutions; Langrange 
Involuation Formula; Section 3.4: Partitions of Integers;  

Lecture XIV : Hardy-Ramanujan formula on number of partitions; 
Ferrer's diagram; Fallon's formula; Euler's formula; 4.1 Section: 
Inclusion Exclusion Formula; Stirling's numbers;  

Lecture XV: Inclusion Exclusion Formula; Generalized PIE; Disjoint 
Path Systems; MacMahon Theorem; Section 4.2: Polya Redfield 
Method;  

Lecture XVI: Generalization of derangements; Signed Involutions; 
Section 4.2: Polya Redfield Method; Burnside Lemma;  

Lecture XVII: Determinants, disjoint paths systems; MacMahon 
Theorem on number of rhombic tilings; Section 4.2: Polya-Redfield 
counting; Burnside lemma; Number of colorings of the cube. 

https://drive.google.com/file/d/1BFWpfNZCJ5zJMUW50RCGYRWYAf2yOu2d/view?usp=sharing
https://drive.google.com/file/d/1xe3IqqE3AGcKsqiozmgYUo3KmT0xgv1L/view?usp=sharing
https://drive.google.com/file/d/1uh7diFLPdQhpeef4K05aj5YfL6FuGPFN/view?usp=sharing
https://drive.google.com/file/d/181lho8b9q-pvlhEZJPt40BkpokWuC939/view?usp=sharing
https://drive.google.com/file/d/1je06mVHOdRAULoYW85xosnnRCc7USVB4/view?usp=sharing
https://drive.google.com/file/d/1PP_NisaJjiLQI6obbyiWGEK3W4SC4bZa/view?usp=sharing
https://drive.google.com/file/d/1yEZQjfCrek8D1oMwp-bPCDqUZ7i9DCcc/view?usp=sharing
https://drive.google.com/file/d/15eVsMtZAkjKMScY0UQXy2tl5PCjVBWr4/view?usp=sharing
https://drive.google.com/file/d/1_k1h79mMqmrYe08cAK-VPEJxi0ide9BG/view?usp=sharing
https://drive.google.com/file/d/1wfsRiokFMQMJvQSvljLvhW3U-ul_Yc_6/view?usp=sharing


Lecture XVIII: Burnside lemma; Number of colorings of the cube. 

Lecture XIX: Section 4.3: General ballot problem, Chapter 5: 
Concepts of graphs; Petersen graph,  

Lecture XX: Kneser graph, Hypercube, Section 5.2: Handshake 
lemma, Rectangles partitioned into rectangles with integer 
sidelengths, Havel-Hakini on degree sequences.  

Lecture XXI: Bipartite subgraphs of graphs, Turan Theorem, Directed 
graphs, Kings in tournaments, Section 5.3: connectivity, Min degree 
2 implies having cycle, Eulerian circuits.  

Lecture XXII: Cut vertex, cut edge, Eulerian circuits. Section 5.4: 
Trees, Chapter 6: matchings, Halls Theorem, Hakini Theorem, 
Birkhoff-Neumann on double stochastic matrices. 

Lecture XXIII: Trees, Chapter 6: matchings, Halls Theorem, Hakini 
Theorem, Birkhoff-Neumann on double stochastic matrices. Defect 
formula for bipartite graphs, König-Egerváry theorem, Gallai 
Theorem, König Theorem. 

Lecture XXIV: Defect formula for bipartite graphs, König-Egerváry 
theorem, Gallai Theorem, König Theorem. Section 6.2: Matchings in 
general graphs, Tutte Theorem, Berge-Tutte formula. 

Lecture XXV: Berge-Tutte formula, k-regular multigraph having one-
factor, Peterson Theorem, Peterson 2-factor theorem, Section 6.3: 
Augmenting lines, Section 7.1: Connectivity parameters. 

Lecture XXVI: Section 7.1: Connectivity parameters, Whitney 
Theorem, Blocks, Section 7.2: k-connected graphs, Menger Theorem.  

https://drive.google.com/file/d/16kOIvVZdkZ3tPG_XVT1PjEiC7V28-NCp/view?usp=sharing
https://drive.google.com/file/d/1JS17NQrTY7krFPxgiCg3Ye6QVSy_77DE/view?usp=sharing
https://drive.google.com/file/d/1JveeLmWszs7Br5gQAcfQGh_BE6GnYK31/view?usp=sharing
https://drive.google.com/file/d/1NJ_IOy6R_H2GdCOL9w1vEiWQmA-xP94d/view?usp=sharing
https://drive.google.com/file/d/16ubCcLuY3CI46ZGlgo9booVHnXDzg8t1/view?usp=sharing
https://drive.google.com/file/d/1OEHtvF-TGdtYhzTJcmbCMIvYHjHMBaF-/view?usp=sharing
https://drive.google.com/file/d/18XL_2CmZOnaQQ17NyCPYGo80CfSLiMay/view?usp=sharing
https://drive.google.com/file/d/1QOEwS8yQmvfuy54J-FcWbaZt-TEbV2_q/view?usp=sharing
https://drive.google.com/file/d/1tUu700dKbkqFZ2MA7vzpKOsP_eTiDHy1/view?usp=sharing


Lecture XXVII: Section 7.2: k-connected graphs, Menger Theorem, 
Expansion lemma, Dirac Theorem (k points in a cycle in k-connected 
graphs). 

Lecture XXVIII: Fan Lemma, Ford-Fulkerson Common System Distinct 
Representatives, 2,3-connected graphs, Whitney theorem for ear-
decomposition, Robbins Theorem.  

Lecture XXIX: Section 7.3: Hamilton cycles, Ore Lemma, Dirac 
Theorem, Chvatal condition on Hamiltonicity, Chvatal-Erdos condition, 
Erdos-Gallai on circumference.  

Lecture XXX: Erdos-Gallai on circumference, Chapter 8.1: Vertex 
coloring, Brooks Theorem (no proof), Szekered-Wilf Theorem, Gallai-
Roy Theorem, Mycielski construction, Sectionm 8.2: Color-critical 
graphs. 

Lecture XXXI: Mycielski construction, Sectionm 8.2: Color-critical 
graphs, List coloring, Section 8.3: edge-coloring, König: every 
bipartite graph is max-degree colorable, Perfect graphs.  

Lecture XXXII: Section 8.3: edge-coloring, König: every bipartite 
graph is max-degree colorable, Perfect graphs. Chapter 9: Planar 
graphs. 

Lecture XXXIII: Chapter 9: Planar graphs. Outerplanar graphs. Euler 
formula. Characterization of regular polyhedra. Section 9.2: 
Structure of planar graphs. Section 9.3: Coloring planar graphs, 
proof of 5-color theorem. Example for applying the discharging 
method. 

https://drive.google.com/file/d/1zagQ33OF2OiJXVf5nc6PCaY27e6-d8vQ/view?usp=sharing
https://drive.google.com/file/d/1bpBY9mx_5ukEC_4txdT0wDWT6niByUZu/view?usp=sharing
https://drive.google.com/file/d/1UyHE9IYvRGM4gVu9M0soQsYGmdoMsPC3/view?usp=sharing
https://drive.google.com/file/d/1zFuzmC_gamcOa96XTFPCIh7SLO33mxiY/view?usp=sharing
https://drive.google.com/file/d/1PRLPRbgh9WB8EO94_4S6GKUMtqJZq1Go/view?usp=sharing
https://drive.google.com/file/d/1FmGxBAUK-zOIb3sbkiX-Xc4cuqBQE1IH/view?usp=sharing
https://drive.google.com/file/d/1Xfm04Y6kGgjwBiCNo8KFeiqxqvFu437D/view?usp=sharing


Lecture XXXIV : Section 9.2: Structure of planar graphs. Section 
9.3: Coloring planar graphs, proof of 5-color theorem. Example for 
applying the discharging method. Chapter 10.2: Ramsey Theory, 
probabilistic lower bound on diagonal Ramsey, Inductive proof of 
general Ramsey theorem (that Ramsey numbers are finite). 

Lecture XXXV: Inductive proof of general Ramsey theorem (that 
Ramsey numbers are finite). Erdõs- Szekeres: points in convex 
position, Chvatal: Ramsey trees vs cliques, Burr- Erdõs- Spencer: 
Ramsey of m vertex disjoint triangles, Section 10.3: Schur Theorem, 
Chapter 14.1: Erdõs: minimum number of edges of non-2-colorable n-
uniform hypergraphs, Pluhár, Kozik-Cherkasin lower bounds, Improving 
diagonal Ramsey lower bounds. 

Lecture XXXVI: Chapter 14.1: Erdõs: minimum number of edges of 
non-2-colorable n-uniform hypergraphs, Pluhár, Kozik-Cherkasin lower 
bounds, Improving diagonal Ramsey lower bounds. Symmetric Erdõs- 
Lovász Local Lemma (statement), application to diagonal Ramsey. 
Existence of large girth, large chromatic number graphs, Caro-Wei 
proof of Turán Theorem. Markov's Inequality. Second Moment 
Method, Chebyshev Inequality. In G(n,p) thresholds for connectivity 
and having no isolated vertex. 

Lecture XXXVII : Caro-Wei proof of Turán Theorem. Markov's 
Inequality. Second Moment Method, Chebyshev Inequality. In G(n,p) 
thresholds for connectivity and having no isolated vertex. Chapter 13: 
Latin squares. Existence of n-1 pairwise orthogonal Latin squares of 
order n. Projective planes. Construction. Reimann: Constructing 
bipartite C_4-free graphs. Köváry- Sós- Turán: upper bound on the 
number of edges of bipartite C_4-free graphs.  

https://drive.google.com/file/d/1vawDADCM6BN9b4RkdTl1U87d_Pdx7j7k/view?usp=sharing
https://drive.google.com/file/d/1HwrorJ1CE_Hr7i9iRvzmBYQOaQU_lhXq/view?usp=sharing
https://drive.google.com/file/d/1gPut7CVhpVMoMkfallxn-ZrH9J86rj84/view?usp=sharing
https://drive.google.com/file/d/1kJOD3kQIAYZm6v9-P_qBM_vFeJAFGDNE/view?usp=sharing


Lecture XXXVIII: Szemerédi Regularity Lemma [statement only]. 
Embedding Lemma, Counting Lemma. Chapter 13: Latin squares. 
Existence of n-1 pairwise orthogonal Latin squares of order n. 
Projective planes. Construction. Reimann: Constructing bipartite C_4-
free graphs. Köváry- Sós- Turán: upper bound on the number of 
edges of bipartite C_4-free graphs. Block desings.  

Lecture XXXIX: Block desings. Fisher's Inequality, Bose theorem, 
Hadamard matrix, Difference sets. 

Lecture XL: Chapter 12: Posets, Dilworth Theorem, Sperner 
Theorem, LYMB Inequality, Erdõs-Ko-Rado Theorem, Katona circle 
method, Hoffman bound,  
 

https://drive.google.com/file/d/169hIY1_0R773cqJGGCrwEJxpKwARCPZ3/view?usp=sharing
https://drive.google.com/file/d/1I8CUrOZ0-mXrCyfviPZsjyPTxChZy7wi/view?usp=sharing
https://drive.google.com/file/d/1iWD_ds-Zw-_Jl1ntwQVLtiouMNzkcnIU/view?usp=sharing
https://drive.google.com/file/d/1iWD_ds-Zw-_Jl1ntwQVLtiouMNzkcnIU/view?usp=sharing


analysis and topology in analytic combinatorics 
 
The course will cover a collection of topics around complex-analytic tools useful for combinatorics. 

We will rely heavily on Melszer, Pemantle and Wilson books, but also on material beyond those. 
The course will be graded on 3-4 homeworks (50%) and a project (50%). 
Topics to be covered: 

• Introduction into combinatorial species and generation of generating functions. 
• Generating functions and their coefficients. Cauchy formula. One function, many series. 
• Dependence on parameters and basic formalism of statistical mechanics. Rudiments of large deviation 

theory. 
• Many variables: amoebas, their properties. 
• Theory of residues in higher dimensions. Iterated residues. 
• Main results for rational generating function: case of smooth pole. 
• Asymptotics of oscillating integrals. 
• Lattice quantum random walks. 
• Algebraic generating functions. 
• Frozen regions in dimer models and rational generating functions with singular poles. 
• Petrovsky-Atiyah-Bott-Gårding theory of fundamental solutions to hyperbolic linear PDEs; applications to 

generating functions. 
• Lacunas and discontinuities of the coefficient growth exponents. 

 

http://acsvproject.com/book/


 
* 595 Fukaya Categories of Surfaces 
 
The Fukaya category is a sophisticated invariant of symplectic 
manifolds whose definition in full generality is intricate. In the 
original formulation, objects of this category are certain "branes" 
supported on Lagrangian submanifolds, and the composition laws in the 
category involve pseudo-holomorphic maps with Lagrangian boundary 
conditions (Floer theory). 
 
At the same time, a category, like any other algebraic structure, can 
admit many presentations. For instance, we could try to find a 
presentation of the Fukaya category by generators and relations, or we 
could try to build the Fukaya category of a symplectic manifold up 
from categories associated to smaller pieces of the manifold. 
 
Let S be a oriented surface (2-dimensional real manifold). The Fukaya 
category of S is now well-understood enough that we know multiple ways 
of presenting it. The goal of this course is to study the Fukaya 
category of S via multiple presentations, the original Floer theoretic 
definition being only one of them. Others include the theory of 
"gentle algebras" (by results of Haiden-Katzarkov-Kontsevich), and a 
perspective that views the Fukaya category of S as an object in 
homological algebra (Dyckerhoff-Kapranov). 
 
Thus, although this course will include some Floer theory, it will not 
be strictly speaking necessary in order to understand all of the 
different approaches to the Fukaya category of a surface. My hope is 
that students with different backgrounds in geometry and algebra will 
be able to find at least one way of thinking about the Fukaya category 
that makes sense to them. Applications of these ideas to Homological 
Mirror Symmetry will also be discussed. 

 



Math 595

Representation-theoretic methods in quantum information theory

Fall term 2022 Lecturer: Felix Leditzky

In this course we study symmetries in quantum information theory using tools from repre-
sentation theory. Two fundamental symmetry groups in quantum information are the symmet-
ric group, acting by permuting subsystems in a tensor product of identical Hilbert spaces, and
the unitary group, acting diagonally on a tensor product space. Schur-Weyl duality establishes
a close relationship between these two representations, giving rise to a useful decomposition
of the representation space into irreducible representations. This structure result allows us to
succinctly describe invariant objects and characterize optimal information-processing protocols
in the presence of permutation and unitary symmetries.

The first half of the course starts with a brief review of the basics of quantum information
theory and representation theory. We then discuss the representation theory of the symmetric
and unitary groups and how they relate to each other via Schur-Weyl duality. These findings
can be applied to characterize symmetric quantum states such as Werner and isotropic states.

In the second half of the course we use these representation-theoretic methods to charac-
terize quantum information-processing tasks such as data compression, spectrum estimation,
quantum state tomography, and quantum state merging. Depending on available time and
interest, we will also discuss useful results such as de Finetti theorems and the decoupling
theorem.

Class time

Tue & Thu 02:00–03:20, 147 Altgeld Hall. Office hours by appointment.

Prerequisites

• Required:

– Math 416 Abstract Linear Algebra (or equivalent)
– Math 417 Intro to Abstract Algebra (or equivalent)

• Useful but not necessary:

– Math 506 Group Representation Theory
– Math 522 Lie Groups and Lie Algebras I
– Intro to Quantum Mechanics/Information

(such as ECE 404, Phys 486/487, Phys 513)

Please get in touch at leditzky@illinois.edu if you have any questions on this.

Grading policy

There will be no mandatory homework assignments or written exams for this course.
Grading will be based on class participation. I will provide exercises that we can discuss
in office hours.
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mailto:leditzky@illinois.edu


Course outline

• Basics of quantum information theory (review)
• Basics of representation theory (review)
• Representation theory of the symmetric and unitary groups (review)
• Schur-Weyl duality
• Werner states, isotropic states, covariant quantum channels
• Permutation invariance and de Finetti theorems
• Data compression and type theory
• Spectrum estimation and quantum state tomography
• Decoupling theorem and quantum state merging

Literature

• Matthias Christandl. “The structure of bipartite quantum states-insights from group
theory and cryptography”. Available online. PhD thesis. University of Cambridge,
2006.

• Aram W. Harrow. “The church of the symmetric subspace”. arXiv preprint (2013).
Available online.

• Jean-Pierre Serre. Linear Representations of Finite Groups. Graduate Texts in Mathe-
matics. New York: Springer, 1977.

• Constantin Teleman. Representation Theory. Lecture notes. Available online. 2005.
• Michael Walter. Symmetry and Quantum Information. Lecture notes. Available online.

2018.
• John Watrous. The Theory of Quantum Information. Available online. Cambridge:

Cambridge University Press, 2018.
• Mark M. Wilde. Quantum information theory. 2nd edition. Available online. Cam-

bridge: Cambridge University Press, 2016.
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https://arxiv.org/abs/quant-ph/0604183
https://arxiv.org/abs/1308.6595
https://math.berkeley.edu/~teleman/math/RepThry.pdf
https://qi.ruhr-uni-bochum.de/qit18/qit18.pdf
https://cs.uwaterloo.ca/~watrous/TQI/
https://arxiv.org/abs/1106.1445


FALL 2022, MATH 595, EXPONENTIAL SUMS

INSTRUCTOR: ALEXANDRU ZAHARESCU

Math 595 ES, TR 9:30 - 10:50PM, room 145 Altgeld Hall

Exponential sums play an important role in many questions in num-

ber theory, and also in some problems arising from other fields. The

first part of the course will cover classical material. For this part we

will follow selected chapters from Montgomery’s book. In the second

part of the course we will study some recent papers on the distribu-

tion of zeros of the Riemann zeta function, points on curves over finite

fields, billiards, lattice points and Farey fractions, where exponential

sums play a central role.

Prerequisite: MATH 531.

Recommended Textbook:

H. L. Montgomery, Ten lectures on the interface between analytic

number theory and harmonic analysis, CBMS Regional Conference Se-

ries in Mathematics, 84. Providence, RI, 1994.

There will be no exams. Students registered for this course will be

expected to give one or two lectures on some topics related to the

content of the course. In addition some homework problems will be

assigned.

Office hours by appointment.

Office: 449 Altgeld Hall.

E-mail: zaharesc@illinois.edu
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