Congruences for r-colored partitions

Robert Dicks, UIUC

Let \(\ell \geq 5 \) be prime. For the partition function \(p(n) \) and \(5 \leq \ell \leq 31 \), Atkin found a number of examples of primes \(Q \geq 5 \) such that there exist congruences of the form \(p(\ell Q^3n + \beta) \equiv 0 \pmod{\ell} \). Recently, Ahlgren, Allen, and Tang proved that there are infinitely many such congruences for every \(\ell \). In this paper, for a wide range of \(c \in \mathbb{F}_\ell \), we prove congruences of the form \(p(\ell Q^3n + \beta_0) \equiv c \cdot p(\ell Qn + \beta_1) \pmod{\ell} \) for infinitely many primes \(Q \). For a positive integer \(r \), let \(p_r(n) \) be the \(r \)-colored partition function. Our methods yield similar congruences for \(p_r(n) \). In particular, if \(r \) is an odd positive integer such that \(3r \) for which \(\ell > 5r + 19 \) and \(2^{r+2} \not\equiv 2^{\pm 1} \pmod{\ell} \), then we show that there are infinitely many congruences of the form \(p_r(\ell Q^3n + \beta) \equiv 0 \pmod{\ell} \). Our methods involve the theory of modular Galois representations.