
GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY
AND GRAPH THEORY

VAIBHAV KARVE AND ANIL N. HIRANI

Abstract. Satisfiability of boolean formulae (SAT) has been a topic of research in logic and
computer science for a long time. In this paper we are interested in understanding the structure
of satisfiable and unsatisfiable sentences. In previous work we initiated a new approach to SAT by
formulating a mapping from propositional logic sentences to graphs, allowing us to find structural
obstructions to 2SAT (clauses with exactly 2 literals) in terms of graphs. Here we generalize
these ideas to multi-hypergraphs in which the edges can have more than 2 vertices and can have
multiplicity. This is needed for understanding the structure of SAT for sentences made of clauses
with 3 or more literals (3SAT), which is a building block of NP-completeness theory. We introduce
a decision problem that we call GraphSAT, as a first step towards a structural view of SAT. Each
propositional logic sentence can be mapped to a multi-hypergraph by associating each variable with
a vertex (ignoring the negations) and each clause with a hyperedge. Such a graph then becomes
a representative of a collection of possible sentences and we can then formulate the notion of
satisfiability of such a graph. With this coarse representation of classes of sentences one can then
investigate structural obstructions to SAT. To make the problem tractable, we prove a local graph
rewriting theorem which allows us to simplify the neighborhood of a vertex without knowing the
rest of the graph. We use this to deduce several reduction rules, allowing us to modify a graph
without changing its satisfiability status which can then be used in a program to simplify graphs.
We study a subclass of 3SAT by examining sentences living on triangulations of surfaces and show
that for any compact surface there exists a triangulation that can support unsatisfiable sentences,
giving specific examples of such triangulations for various surfaces.

1. Introduction

We introduce and analyze a novel graph decision problem that we call GraphSAT. Using the
tools of graph theory, this new variant builds upon the classical logic and computer science problem
of boolean satisfiability (ksat). ksat asks if there exists a truth assignment that satisfies a given
boolean formula. Our variant deals with multi-hypergraphs instead of boolean formulae and uses
truth assignments on vertices instead of variables. This graph-theoretic picture helps us explore
and exploit patterns in unsatisfiable instances of ksat, which in turn helps us identify minimal
obstruction sets to graph satisfiability.

In Theorem 3.5 (the local rewriting theorem) we prove invariance of graph satisfiability under a
graph rewriting system that we introduce. This theorem is the main conceptual and computational
tool that allows us to replace the question of satisfiability of a graph by those for smaller graphs. This
theorem makes possible a computational search for patterns in satisfiable and unsatisfiable graphs
without knowing the entirety of the graph. The computational results in this paper, for example
the search for unsatisfiable instances of GraphSAT, were obtained using a Python package (called
graphsat) that we created to handle multi-hypergraph instances and local rewriting of graphs.
This software will be described elsewhere. Our goal in this paper is to introduce GraphSAT and
logical operations on graphs and to prove the local graph rewriting theorem as well as to detail
consequences of this theorem.

This paper is a successor to [2], which looks at GraphSAT restricted to multi-graphs and 2sat.
The key results in that paper are that graph homeomorphisms preserve satisfiability status and a
complete set of minimal unsatisfiable simple graphs. Specifically, we showed that there are exactly

1

ar
X

iv
:2

10
5.

11
39

0v
1

 [
m

at
h.

C
O

]
 2

4
M

ay
 2

02
1

2 VAIBHAV KARVE AND ANIL N. HIRANI

four obstructions to satisfiability in simple graphs and exactly four obstructions to satisfiability in
looped-multi-graphs.

Theorem (Theorem 18 and Remark 19 in [2]). A simple graph is unsatisfiable if and only if it
contains an element of the set {

, , ,

}
as a topological minor. A looped-multi-graph is unsatisfiable if and only if it contains an element of
the set {

, , ,

}
as a topological minor.

This current paper is the first step towards generalizing the 2sat results of [2] to ksat. By
studying properties of satisfiable and unsatisfiable graphs we are studying entire classes of boolean
formulae. This results in a coarsening compared to studying Cnfs directly. Nevertheless, the trans-
lation from Cnfs to graphs capture the essential features of any formula and offers a complete picture
of the structure of its boolean constraints. For example, we show that this notion of satisfiability is
closed under subgraphing as well as under the relations of “shaved graph versions” and topological-
minoring. The family of satisfiable multi-hypergraphs is also closed under the action of a variety of
higher-dimensional analogues of well-known graph operations. We explore these analogous graph
operations and analyze their effects vis-à-vis the structural properties of multi-hypergraphs.

Robertson and Seymour, in their seminal papers [6] proved that a graph family that is closed
under the graph minor operation always has a finite obstruction set. This theorem also does not
apply to the case of graphs for 2sat considered in [2]. Despite this, in [2], we were able to obtain a
very short list of obstructions listed in the Theorem above. The case of ksat for k > 2 considered
here is considerably harder. There is no known finite obstruction Robertson-Seymour theorem
for multi-hypergraphs. Nevertheless, we obtain several hundred obstructions to satisfiability for
multi-hypergraphs. We enumerate a part of this list in Appendix C.

Section 2 introduces definitions and notations used in this paper. It introduces some type-
theoretic notation that streamlines the mathematical exposition. It also includes definitions for the
two halves of GraphSAT, i.e. boolean formulae and graphs.

In Section 3 we state and prove the local graph rewriting theorem (Theorem 3.5), that enables
rewriting of graphs at a vertex, while preserving its satisfiability status. In Section 4 we list some
graph rewrite rules that leave graph satisfiability invariant. In 4.1 we give a result that is true for
edges of any size. Thereafter, we restrict our attention to edges of size at most three. In Sections
5, 6 and 7 we consider the satisfiability of mixed hypergraphs, triangulations, and infinite graphs
respectively. In these sections we summarize some of the key findings enabled by the local rewriting
theorem (Theorem 3.5), and by our graphsat Python package. This software package along with
the local rewriting theorem allows us to conduct experiments combining programming and proofs
to classify graphs, hypergraphs, and infinite graphs as totally satisfiable or unsatisfiable. Section
8 provides a conclusion to this study by summarizing key results as well as future directions and
conjectures.

2. Definitions and notation

We start by inductively defining boolean formulae in conjunctive normal form in §2.2 and graphs
(in fact multi-hypergraphs) in §2.5. We introduce a way to view graphs as sets of Cnfs in §2.5.1.
After translating Cnfs to graphs, we also define a notion of satisfiability for graphs in §2.5.2. We
also define notation and conventions aimed at making the connection between Cnfs and graphs more
intuitive. These are summarized in Table 4.

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 3

Table 1. Summary of all the types defined and used in this section.

Type Relation to other types Description
Variable Variable ≡ V variables; an alias of V
Literal V Literal ≡ V ⊕ V⊕ Bool literals of variable type V
Clause V Clause @ Set Literal clauses of variable type V
Cnf V Cnf @ Set Clause Cnfs of variable type V
Assignment V Assignment @ Set Literal assignment of variable type V

Vertex Vertex ≡ V vertices; an alias of V
Edge V Edge @ Set Vertex hyperedges of vertex type V
Graph V Graph @ Multiset Edge multi-hypergraphs of vertex type V

Bool the type of boolean values (true and false)
N the type of natural numbers
Set V homogeneous sets of elements of type V
Multiset V Multiset V ≡ N× Set V homogeneous multi-sets of elements of type V

2.1. Type theory annotations. Throughout this section, we add various annotations to our terms
in order to aid the reader in parsing and understanding the mathematics presented herein. These
annotations are inspired from the field of type theory and can be thought of as representing the
“category” or the “type” of a term.

For example, we write c : Clause = x1 ∨ x2 to mean c is of type Clause and is equal to x1 ∨ x2.
The type annotations help with clarity without changing the mathematical content. For this reason,
we use them wherever they can add to the exposition and avoid them wherever they might be
unnecessarily verbose.

We will use a fixed list of types in this section, collected in Table 1. Full definitions for each type
can be found in the sections that follow. Let V denote an arbitrary type, used to parameterize the
other types. Elements of V will be called variables. For example, we define the type Cnf V to be
the type of all Cnfs on the variable set V . In practice, we will avoid mentioning V explicitly and
simply write type judgments like (x : Cnf) instead of (x : Cnf V).

In Table 1, we use the notation A ≡ B to be mean that the two types have exactly the same
terms. We write A @ B to mean that A is a subtype of B. This indicates that there are some extra
restrictions placed on A. For example, we have Clause @ Set Literal because every clause can also
be viewed as a set of literals. However, not every set of literals is a clause because we require that
clauses be nonempty. We also use ⊕ and × to denote the disjoint-sum and Cartesian-product of
types respectively.

2.2. Boolean formulae. In this section, we inductively define variables, literals, clauses, Cnfs and
assignments. We then define satisfiability and equi-satisfiability for Cnfs.

We fix an arbitrary countable set and call its elements variables. Variables will be denoted by
x1, x2, y1, y2, etc. We denote the type of variables as Variable and thus can write (x2 : Variable) to
mean that x2 is a variable.

A literal is either a variable, denoted by the same symbol as the variable; or its negation, denoted
by ¬xi or xi. We also declare that there are two additional literals called true (denoted by >) and
false (denoted by ⊥).

We denote the type of literals as Literal and can thus write x2 : Literal to mean that 2 is a
literal. The Literal type is thus composed of two copies of V and one copy of true and false. We
can therefore write Literal ≡ V ⊕ V ⊕ {>,⊥}.

A clause is a disjunction of one or more literals. A clause made of a single literal xi is also
denoted by xi. We denote the type of clauses as Clause. Thus, the following are all valid examples
of clauses — (> : Clause), (⊥ : Clause), (x1 : Clause), (x1 ∨ x2 : Clause).

4 VAIBHAV KARVE AND ANIL N. HIRANI

A Cnf is a boolean formula in conjunctive normal form, i.e. it is a formula made of conjunction
of one or more clauses. A Cnf containing a single clause has the same representation as the clause
itself. Thus, the following are all valid Cnfs — (> : Cnf), (⊥ : Cnf), (x1 : Cnf), (x1 ∨ x2 :
Cnf), ((x1 ∨ x2) ∧ x2 ∨ x3) : Cnf).

2.3. Assignments. A truth assignment (or simply an assignment) is a set of literals with the
additional condition that a literal and its negation cannot both belong to an assignment. We
denote the type of assignments by Assignment.

We define the action of a singleton assignment {i} on a Cnf x to be the Cnf formed by replacing
every occurrence of i in x with > and every occurrence of i in x with ⊥. We define the action of a
general assignment a on a Cnf x to be the Cnf formed by the successive action of each element of
a on x. We denote this new Cnf by x[a].

For example, (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4) [{x1, x2}] = (> ∨ x2) ∧ (> ∨ x2 ∨ x3) ∧ (⊥ ∨
x4) [{x2}] = (> ∨>) ∧ (> ∨⊥ ∨ x3) ∧ (⊥ ∨ x4) = x4.

We simplify this notation by writing x[x1, x2] instead of x[{x1, x2}].

2.4. Satisfiability of Cnfs. A Cnf x is satisfiable if there exists a truth assignment a such that
x[a] = >. Otherwise, x is unsatisfiable. Two Cnfs x and y are equi-satisfiable (denoted x ∼ y) if
either they are both satisfiable or they are both unsatisfiable. We write x ∼ > or x ∼ ⊥ to denote
that x is satisfiable or unsatisfiable respectively.

We also introduce a map for Cnf-satisfiability denoted σ : Cnf −→ Bool, which maps satisfiable
Cnfs to > and unsatisfiable Cnfs to ⊥.

We note that assigning a literal i to > does not change the satisfiability status of a Cnf x, i.e
x[i] ∼ x ∧ i.

2.5. Graphs and Satisfiability. In this section we define graphs inductively starting with vertices
and then building up through edges (looped, simple and hyper) and then multi-edges. The standard
term for these graph objects would be “looped-multi-hypergraphs”. We then define a novel way of
interpreting a graph as a set of Cnfs that can “live on that graph”. This translation of graphs into
sets of Cnfs is lies at the heart of our attempt to turn boolean satisfiability instances into graph
theory problems. Consequently, we make this translation as explicit as possible and provide enough
details so that the interested reader may generate a translation “algorithm” from our definitions to
readily turn any graph into a set of Cnfs.

Let V be a countable set of vertices. We will omit any mention of a specific V and simply denote
its elements using boldface symbols v1,v2, . . . : Vertex. A hyperedge (or simply an edge) on V is a
nonempty set of vertices. We omit the surrounding braces while denoting edges and simply write
the vertices in a contiguous fashion. For example, v1, v1v2 and v2v3v4 denote edges of size one (a
loop), two (a simple edge) and three (a triangle) respectively.

A graph on V is a nonempty multiset of edges on V . In literature, these are typically referred
to as multi-hypergraphs or looped-multi-hypergraphs, but we simply call them graphs. When listing
the edges of a graph, we omit the surrounding braces and wrap each edge in parentheses, listing
them one after the other. For example, g : Graph = (v1v2)(v1v2v3)(v1v4). If an edge repeats in a
graph, we denote its multiplicity as a superscript. For example, g′ : Graph = (v1v2)(v2v3)

3(v4)
2.

The degree of a vertex in an edge is 1 if the vertex is an element of the edge, and 0 otherwise.
The degree of a vertex in a graph is the sum of the degrees of the vertex over all edges of the graph,
while counting multiplicities as distinct edges. We note that we draw a loop as an edge starting an
ending at the same vertex, but this is still considered to contribute only 1 to the degree count of
said vertex.

2.5.1. Graphs as sets of Cnfs. We define the functions f1, f2, f3, f4 as follows —
• f1 : Vertex→ Set Literal, such that v 7→ {v, v}
• f2 : Edge→ Set Clause, such that v1v2 · · · vk 7→ {l1 ∨ l2 ∨ · · · ∨ lk | (li : Literal) ∈ f1(vi)}

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 5

• f3 : N×Edge→ Set Cnf, such that (n, e) 7→ {c1∧· · ·∧cn | (ci : Clause) ∈ f2(e) and ci 6= cj}
• f4 : Graph→ Set Cnf, such that (e1)n1(e2)

n2 · · · (ek)nk 7→ {x1 ∧ · · · ∧ xk | (xi : Cnf) ∈ f3(ni, ei)}
The image of an edge under f3 gives us the set of all Cnfs that “live on that edge”. There are(
2k

n

)
Cnfs in the set corresponding to an edge of size k with multiplicity n. The image of a graph

under f4 gives us the set of all Cnfs that “live on that graph”. We use this set often enough that we
will simply omit writing f1, f2, f3, and f4 and we will conflate the graph with its set of Cnfs. For
example, the following graph is also a set.

g = (v1v2)(v1v3) : Graph
= {(v1 ∨ v2) ∧ (v1 ∨ v3), (v1 ∨ v2) ∧ (v1 ∨ v3), . . . , (v1 ∨ v2) ∧ (v1v3)} : Set Cnf

Therefore, when we write set operations on graphs, say like g ∪ h, we really mean f4(g) ∪ f4(h).
We further define two special sets of Cnfs, which we denote by boldface true and false symbols
• > : Set Cnf = {(> : Cnf)}
• ⊥ : Set Cnf = {(⊥ : Cnf)}

Note that both of these are sets of Cnfs that are not graphs (due to the requirement that a graph
be a nonempty multiset of edges). Similarly, the empty set is also a valid term of type Set Cnf but
is not a valid term of type Graph.

The set of Cnfs living on a graph can sometimes be empty. For example, the following graphs
correspond to empty sets — (v1)

3, (v1v2)
5, (v1v2v3)

9. These sets are empty because their image
under f3 is empty. In general, a graph is empty if and only if it has an edge of size k with multiplicity
more than 2k.

2.5.2. Graph equi-satisfiability. A set of Cnfs g is totally satisfiable if it is nonempty and if every
Cnf in it is satisfiable. Otherwise, it is unsatisfiable. We denote by γ : Set Cnf → Bool, the map
that sends a Graph to > if it is totally satisfiable, and to ⊥ otherwise. We note that for any set of
Cnfs g1 and g2, we have γ(g1 ∪ g2) = γ(g1) ∧ γ(g2).

Two sets of Cnfs g1 and g2 are equi-satisfiable if they are both totally satisfiable or are both
unsatisfiable. We write this as g1 ∼ g2.

We say that g1 equi-implies g2 by the ⊥-criterion (denoted g1
⊥
==⇒ g2) if, ∀(v1 : Cnf) ∈ g1, ∃(v2 :

Cnf) ∈ g2, v1 ∼ ⊥ =⇒ v2 ∼ ⊥. If both g1
⊥
==⇒ g2 and g2

⊥
==⇒ g1, then we denote this more

compactly as g1
⊥⇐=⇒ g2.

We say that g1 equi-implies g2 by the A⊥-criterion (denoted g1
A⊥
===⇒ g2) if, ∀(v1 : Cnf) ∈

g1, ∃(v2 : Cnf) ∈ g2, ∀(a : Assignment), v1[a] = ⊥ =⇒ v2[a] = ⊥. If both g1
A⊥
==⇒ g2 and

g2
A⊥
==⇒ g1, then we denote this more compactly as g1

A⊥⇐=⇒ g2.

Remark 2.1. The idea of graph equi-satisfiability is not necessarily useful for a specific pair of
graphs, but it is useful for discovering operations that preserve satisfiability like when a part of the
graph structure is fixed and not changing.

2.5.3. The GraphSAT decision problem. GraphSAT is the graph decision problem that asks if a
given looped-multi-hypergraph is totally satisfiable.

• Instance: Given a specific looped-multi-hypergraph g.
• Question: Is every Cnf x such that x ∈ g satisfiable.

kGraphSAT is a restriction of GraphSAT that only allows looped-multi-hypergraphs with
hyperedge sizes at most k.

6 VAIBHAV KARVE AND ANIL N. HIRANI

In [2] we enumerated a complete list of minimal unsatisfiable simple graphs and a proof that
2GraphSAT is in complexity class P. We might hope for a similar complete list for 3GraphSAT,
and perhaps a different complexity class for 3GraphSAT. Unfortunately, this is not the case. The
3GraphSAT problem is more complicated for three main reasons —

(1) The minimality of the 2GraphSAT list hinged on homeomorphisms (i.e. edge-subdivisions)
preserving graph satisfiability. There is no single analogue of homeomorphisms, edge-
subdivisions, and topological minoring in the case of hypergraphs.

(2) Bruteforce checking of the satisfiability status of a graph is not a sustainable option for
3GraphSAT owing to the large number of Cnfs supported by a typical looped-multi-
hypergraph.

(3) In studying 2GraphSAT, we argued (in [2]) that we can always reduce higher multiplicity
edges down to 1. This was because a multiplicity 4 edge is always unsatisfiable, a multiplicity
3 edge forces an assignment on its vertices, and a multiplicity 2 edge forces an equivalence
on its vertices. Such a complete result does not exist for hyperedges. The best we can do is
to say that a multiplicity 8 hyperedge is always unsatisfiable, and a multiplicity 7 hyperedge
forces assignments on its vertices.

These factors conspire to make 3GraphSAT a harder problem to solve, but also yield richer
structures and relations between various multi-hypergraphs and their satisfiability statuses.

2.5.4. Disjunction and conjunction of graphs. We define disjunction for sets of Cnfs to be a binary
operation f1 such that

f1 : Set Cnf× Set Cnf→ Set Cnf, (s1, s2) 7→ {f2(x1 ∨ x2) | (x1 : Cnf) ∈ s1, (x2 : Cnf) ∈ s2} ,
where, f2 : Boolean-Formula→ Cnf, is a map that converts boolean formulae into Cnfs by repeat-
edly using distributivity of disjunction over conjunction. We note that this is only one of several
possible implementations of f2. We choose this implementation because it has the advantage of
not introducing any new variables. In a computer implementation of f2, the use of distributivity
is inefficient. But, since we are concerned only with small graphs, this is not an issue. We write
g1 ∨ g2 instead of f1(g1, g2).

We define conjunction for sets of Cnfs to be a binary operation f3 such that f3 : Set Cnf ×
Set Cnf → Set Cnf, (s1, s2) 7→ {x1 ∧ x2 | (x1 : Cnf) ∈ s1, (x2 : Cnf) ∈ s2}. We write g1 ∧ g2 in-
stead of f3(g1, g2).

We note that disjunction of graphs need not result in a graph, while conjunction of graphs always
does. We now list some properties of graph disjunction, graph conjunction and equi-satisfiability.

Proposition 2.1. Let g1 and g2 be sets of Cnfs.

(1) g1 ∼ g2 if and only if g1
⊥⇐=⇒ g2.

In other words, we can restrict our attention to only finding unsatisfiable Cnfs in both sets
in order to prove their equi-satisfiability.

(2) g1
A⊥
===⇒ g2 implies g1

⊥
==⇒ g2 for every g : Set Cnf.

In other words, equi-implication by the A⊥-criterion is a stronger condition than the ⊥-
criterion.

(3) g1
A⊥
===⇒ g2 implies g ∧ g1

A⊥
===⇒ g ∧ g2 for every g : Set Cnf.

(4) g1 ∼ g2 implies g ∧ g1 ∼ g ∧ g2, for every g : Set Cnf.
In other words, particularly when dealing with graphs, we can factor out the largest common
subgraph and restrict our attention to finding Cnfs on the remaining edges in order to prove
graph equi-satisfiability.

(5) g1 ∨ g2
A⊥
==⇒ g1, and similarly, g1 ∨ g2

A⊥
==⇒ g2.

(6) If both g1 and g2 are unsatisfiable, then we can conclude that g1 ∨ g2 is also unsatisfiable.

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 7

(7) If we take our arrows to be equi-implications under the A⊥ criterion, then graph disjunction
obeys the universal property of products, while union of Cnf sets possesses the universal
property of sums.
(a) If g A⊥

==⇒ g1 and g A⊥
==⇒ g2, then g

A⊥
==⇒ g1 ∨ g2.

(b) If g1
A⊥
==⇒ g and g2

A⊥
==⇒ g, then g1 ∪ g2

A⊥
==⇒ g.

(8) Let g be a set of Cnfs. If either one of g ∧ g1 or g ∧ g2 is totally satisfiable, then, so is
g∧(g1 ∨ g2).

(9) g1
A⊥
==⇒ g2 implies (g ∧ g1) ∪ (g ∧ g2) ∼ g ∧ g2, for every g : Set Cnf. Proposition 2.1.

Proof.

(1) Suppose that g1 ∼ g2. If both sets are totally satisfiable, then the statement is vacuously
true. If both sets are unsatisfiable, then for every unsatisfiable Cnf in g1, we choose an
unsatisfiable Cnf in g2. Similarly, for every unsatisfiable Cnf in g2, we can choose a cor-
responding unsatisfiable Cnf in g1, thus satisfying the requirements of the ⊥-criterion of
equi-implication. Conversely, if g1

⊥⇐=⇒ g2, then given an unsatisfiable Cnf in g1 we can
obtain an unsatisfiable Cnf in g2. Thus, either both sets are totally satisfiable or both are
unsatisfiable.

(2) Proof follows from definition of the A⊥- and ⊥-criterions of equi-implication.
(3) If either g, g1, or g ∧ g1 is empty, the conclusion is vacuously true. Let us suppose then

that these sets are all nonempty. Let (x ∧ x1 : Cnf) be an element of g ∧ g1. Using the
hypothesis, we can obtain a Cnf x2 such that x2 is falsified by every assignment that falsifies
x1.

Any assignment that falsifies x ∧ x1 also falsifies x ∧ x2. We have therefore proved that
g ∧ g1 equi-implies g ∧ g2 by the A⊥-criterion.

(4) The proof follows from items 1 and 3.
(5) Let (x : Cnf) ∈ g1 ∨ g2. We can factor x as x = x1 ∨ x2 for some (x1 : Cnf) and (x2 : Cnf),

such that x1 ∈ g1 and x2 ∈ g2. We choose y = x1. Then, any assignment that falsifies x
falsifies both x1 and x2. In particular, any such assignment also falsifies y.

(6) Let (x1 : Cnf) ∈ g1 and (x2 : Cnf) ∈ g2 be unsatisfiable Cnfs. Any assignment that satisfies
x1∨x2 must also satisfy either x1 or x2 or both. Hence, we can conclude that no assignment
satisfies x1 ∨ x2. This proves that g1 ∨ g2 is unsatisfiable.

(7) For (a), we note that for every (x : Cnf) ∈ g, there exist Cnfs x1 ∈ g1 and x2 ∈ g2 such
that any assignment that falsifies x also falsifies both x1 and x2. Thus, any assignment that
falsifies x also falsifies x1 ∨ x2. For (b), we note that for every (x1 : Cnf) ∈ g1, there exists
a Cnf x ∈ g such that any assignment that falsifies x1 also falsifies x. This covers every Cnf
in g1 ∪ g2 coming from g1. A similar argument hold for every Cnf coming from g2. This
proves that g1 ∪ g2

A⊥
==⇒ g.

(8) Suppose g∧(g1 ∨ g2) is unsatisfiable. Then, there exist Cnfs x ∈ g, x1 ∈ g1, and x2 ∈ g2
such that x ∧ (x1 ∨ x2) is unsatisfiable. Then, both x ∧ x1 ∼ ⊥ and x ∧ x2 ∼ ⊥. In other
words, both g ∧ g1 and g ∧ g2 are unsatisfiable.

(9) It suffices to show that g1 ∪ g2
A⊥⇐=⇒ g2. g1 ∪ g2

A⊥
==⇒ g2 follows from 7b. g2

A⊥
==⇒ g1 ∪ g2

is trivially true.
�

Remark 2.2. We note that graph conjunction and graph disjunction have several familiar properties
while also missing several properties that we are used to.

(1) Both operations are commutative and associative.

8 VAIBHAV KARVE AND ANIL N. HIRANI

(2) The operations do not obey distributivity laws, i.e. for general sets or Cnfs g1, g2, and g3,
(a) g1∧(g2 ∨ g3) 6= (g1 ∧ g2) ∨ (g1 ∧ g3). In fact, we have g1∧(g2 ∨ g3) ⊂ (g1 ∧ g2) ∨

(g1 ∧ g3). To see that this is a proper subset, we can merely count the number of Cnfs
on both sides. The left side has n1n2n3 Cnfs, where ni is the cardinality of the set gi,
while the right side has n21n2n3 Cnfs.

(b) g1∨(g2 ∧ g3) 6= (g1 ∨ g2) ∧ (g1 ∨ g3). In fact, we have g1∨(g2 ∧ g3) ⊂ (g1 ∨ g2) ∧
(g1 ∨ g3). To see that this is a proper subset, we count n1n2n3 Cnfs on the left side,
while the right side has n21n2n3 Cnfs.

2.5.5. Graph disjunction does not always result in graphs. Essential to carrying out local graph
rewriting (detailed in §3) is the calculation of graph disjunctions of the form gi ∨ hi. A graph
disjunction, even if we start with gi and hi being graphs, frequently yields a set of Cnfs that might
not be a graph. For example,

a ∨ a = {x ∨ y | (x, y : Cnf) ∈ a}
= {a ∨ a, a ∨ a, a ∨ a, a ∨ a}
= {a, a, >}

We note that these three Cnfs do not belong to the set corresponding to any single graph because
the Cnfs do not have the same vertex set. The Cnfs a and a have a vertex set of a; the true
Cnf has an empty vertex set. Nevertheless, we can write it as a union of graphs. We can write
a ∨ a = > ∪ a.

Nevertheless, we cannot always write a disjunction even as a union of graphs. For example,

a∨(a ∧ b) = {a ∨ (a ∧ b), a ∨ (a ∧ b), a ∨ (a ∧ b), a ∨ (a ∧ b),
a ∨ (a ∧ b), a ∨ (a ∧ b), a ∨ (a ∧ b), a ∨ (a ∧ b)}

= {a ∧ (a ∨ b), a ∧ (a ∨ b), a ∨ b, a ∨ b,
a ∨ b, a ∨ b, a ∧ (a ∨ b), a ∧ (a ∨ b)}

= ab ∪ {a ∧ (a ∨ b), a ∧ (a ∨ b), a ∧ (a ∨ b), a ∧ (a ∨ b)}
Although the remaining Cnfs all belong to the same graph, namely a ∧ ab, we note that we do not
have the complete set. For example, we are missing the Cnf a ∧ (a ∨ b). Hence we cannot write
a∨(a ∧ b) = ab ∪ a ∧ ab. The best we can do is —

ab ⊂ a∨(a ∧ b) ⊂ ab ∪ a ∧ ab.
These subset-superset pairs give us a lower and upper bound for the set in the middle. The utility

of these subset-superset pairs becomes apparent when we view them in the context of satisfiability
statuses. In the following equation, let s an arbitrary graph. Then, we have —

γ(s ∧ ab)← γ(s∧(a∨(a ∧ b)))← γ(s ∧ ab) ∧ γ(s ∧ a ∧ ab).
This means that if s ∧ ab is unsatisfiable, then is s∧(a∨(a ∧ b)) too. On the other hand, if

s ∧ ab is totally satisfiable, then by checking if s ∧ a ∧ ab is also totally satisfiable, we can conclude
that s∧(a∨(a ∧ b)) is totally satisfiable as well. This is a technique that we often use since the
graph disjunction does not always yield a union of graphs.

We include tables of such standard graph disjunctions in Appendix B. These tables come in handy
performing local rewrites, as seen in §4. The first two tables list graph disjunctions that can be
written exactly as a union of graphs; the third table lists graph disjunctions that can only be listed
as a subset-superset pair.

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 9

3. Local rewriting in graphs

Graph rewriting concerns the technique of creating a new graph out of an original graph algo-
rithmically. Formally, a graph rewriting system consists of a set of graph rewrite rules of the form
gL gR. The idea is that to apply the rule to a graph g, we search for the presence of a subgraph
gL of g and replace the subgraph with gR while leaving the rest unchanged. Such rewrite rules
come in two forms —

(1) Local rules — when a graph is rewritten at a particular vertex. In this case, all edges not
adjacent to the vertex remain unaffected by the rewrite.

(2) Global rules — when a graph is rewritten by searching for specific subgraphs that are
isomorphic to gL.

We will concern ourselves with local rules in this section, while global rules will be handled by
§4.

We are looking for hypergraph analogue(s) of edge-subdivisions/edge-smoothing in order to define
the corresponding notion of minimality in 3GraphSAT. This leads us naturally into local rewriting,
i.e. operations where change the graph at a single vertex and its neighborhood. The idea is to
find changes or rewrites that leave the satisfiability of a graph unchanged. For example, edge-
subdivision can be though of as the rewrite g ∧ ab g ∧ ac ∧ bc, while the inverse operation of
edge smoothing can be thought of as g ∧ ac ∧ bc ab. Using local rewriting, we try to generalize
this rule as well as the proof that it leave the satisfiability of a graph unchanged.

For local rules, we focus on the extended notion of “making assignments” detailed in §3.1. Just
as for a Cnf x, x[l] denotes its an assignment at a literal l, we write g[v] to denote assignment at a
vertex v of a graph g.

Literal assignments on Cnfs have two key properties that make them useful –

(1) If x is a Cnf and l is a literal that is in the set of literals of x, then x[l] is guaranteed to be
smaller than x – it either has fewer clauses, or it has the same number of clauses but with
those clauses having fewer literals in them.

(2) x is satisfiable if and only if either one of x[v] or x[v] are satisfiable.

Vertex assignments on graphs also have similar properties —

(1) If g is a graph and v is a vertex in the vertex set of g, then g[v] will always have Cnfs that
are smaller than the Cnfs in g.

(2) g[v] is totally satisfiable if and only if g is totally satisfiable.

This operation of vertex assignment is defined rigorously in §3.1. The local graph rewriting
theorem (Theorem 3.5) presents an alternate expression for computing g[v] that is easier to write
when performing calculations, easier to code when programming it into a computer, and is a form
that is used for proving several global graph rewrite rules. The essence of this theorem is that even
though satisfiability (both boolean and graph) is a global problem i.e. it is affected by the full
structure of the Cnf, it can also be broken down into a series of local assignments in the case of
Cnfs and a series of local rewrites in the case of graphs. Given a graph, we can decompose it at
one of its vertices of by computing this alternate expression in terms of the link and rest of the
graph without needing to step down to the level of Cnfs. We close this section with a discussion on
some consequences of this theorem and an implementation of local rewriting in code (as a part of
graphsat).

Remark 3.1. We note that replacing a part of a CNF with an equisatisfiable part breaks the
equi-satisfiability of the whole CNF. For example, even though a ∨ b is equisatisfiable to c ∨ d, we
cannot replace (a∨ b)∧ a∧ b with (c∨ d)∧ a∧ b, since the former is unsatisfiable while the latter is
satisfiable.

10 VAIBHAV KARVE AND ANIL N. HIRANI

However, in graphs, replacing some special subgraphs with equisatisfiable pieces preserves equi-
satisfiability. This is the basis for finding rewrite rules using the local rewriting theorem (Theorem
3.5.

3.1. Assignments on graphs. For a clause or Cnf, we defined assignments at a literal in §2.3.
We now define assignments for a graph at a vertex. We note that this is a completely new notion
that does not exists in graph theory and can be defined here only because of the connection we have
established between graphs and Cnfs in the previous sections.

Let v be a vertex, and g be a graph. We define,

g[v] : Set Cnf = {x[v] ∨ x[v] | (x : Cnf) ∈ g, (v : Literal) ∈ v}
We note here that despite what the notation might suggest, x[v] is in general not an element of

g[v]. If x ∈ g, then x[v] is in fact an element of the graph link(g,v)∧ rest(g,v). The definitions of
link and rest can be found in §3.2.

Next, we prove that assignments on graphs do not alter their satisfiability status. This is useful
because post-assignment the graphs always result in sets with Cnfs having one fewer variable, while
not altering their satisfiability status.

Lemma 3.1. Let g be a graph and let v be a vertex. Then, g[v] ∼ g.

Proof. From the definition of g[v], we know that g[v] = {x[v] ∨ x[v] | (x : Cnf) ∈ g, (v : Literal) ∈ v}.
First, we note that each x[v] is equisatisfiable to x ∧ v and each x[v] is equisatisfiable to x ∧ v.

Thus, we can write x[v]∨x[v] ∼ (x∧v)∨(x∧v) = x, using the fact that disjunction of equisatisfiable
Cnfs is equisatisfiable.

Next, we note that we can replace each Cnf of the set g[v] with an equisatisfiable Cnf without
affecting the satisfiability status of the set. Thus, we write g[v] ∼ {x | (x : Cnf) ∈ g} = g. �

3.2. Parts of a graph. We now define some parts of graphs that will be useful for stating the local
rewriting theorem (Theorem 3.5). Let g be a graph and let v be a vertex.

• The star of g at a vertex v of g is the graph of all edges containing v.
star : Graph × Vertex → Graph, such that ((e1)n1 · · · (ek)nk , v) 7→ (e1)

m1 · · · (ek)mk ,
where mi = ni if v ∈ ei and mi = 0 otherwise, i.e. we omit the edge ei otherwise.
• The link of g at v is the graph formed by removing v from each edge of the star of g at v.
In the following equation, (−) denotes the usual set difference.
link : Graph×Vertex→ Graph, such that ((e1)

n1 · · · (ek)nk , v) 7→
(e1 − {v})m1 · · · (ek − {v})mk , where mi = ni if v ∈ ei and mi = 0 otherwise. Any
edges with 0 multiplicity or with size 0 after deleting the vertex v will simply be omitted
from the resulting graph.
• The rest of g at v is the graph formed by all edges not containing v. In other words, these
are the edges of g not contained in star(g,v)
rest : Graph × Vertex → Graph, such that ((e1)n1 · · · (ek)nk , v) 7→ (e1)

m1 · · · (ek)mk ,
where mi = ni if v /∈ ei and mi = 0 otherwise, i.e. we omit the edge ei otherwise.

We note that when computing the 2-partitions of a multiset (for example a graph), we can split
an edge with multiplicity across the partitions. This observation will come in handy when using
the local rewriting theorem (Theorem 3.5). For example, we will consider {(e1)(e2), (e2)2} to be
a valid 2-partition of the graph (e1)(e2)

3.
A graph g is a subgraph of a graph h if every edge of g (counting duplicates as distinct) is also

an edge of h. We denote this partial order on graphs by g ≤ h. An edge e is a face of an edge f
if every vertex in e is also in f . A graph g is a shaved version of a graph h if g can be constructed
by replacing each edge of h (counting duplicates as distinct) by a nonempty face of itself. We note
that each graph is a shaved version of itself. We denote this partial order on graphs by g � h.

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 11

We now prove some lemmas outlining the relation between subgraphs, shaved versions and sat-
isfiability.

Lemma 3.2. Let g1 and g2 be graphs such that g1 ≤ g2. Then, g1
A⊥
==⇒ g2.

Proof. We can write g2 = g1 ∧ g for some (g : Graph). Let (x1 : Cnf) ∈ g1. Let (x : Cnf) ∈ g
be an arbitrary Cnf in g. If (a : Assignment) is such that x1[a] = ⊥, then we have (x1 ∧ x)[a] =
x1[a] ∧ x = ⊥. �

Lemma 3.3. Let e and f be edges such that e is a face of f . Then, f A⊥
==⇒ e.

Proof. Let (cf : Clause) ∈ f be arbitrary. We can write cf = ce ∨ c for some (ce : Clause) ∈ e and
some (c : Clause) ∈ f \ e. Then, any assignment a that falsifies cf necessarily falsifies ce, hence
proving the result. �

Lemma 3.4. Let g1 and g2 be graphs such that g1 � g2. Then, g2
A⊥
==⇒ g1.

Proof. We argue that the result follows for each face from the previous lemma. We can string these
faces together to form the graphs while preserving equi-implication under the A⊥-criterion using
Proposition 3. �

3.3. The local rewriting theorem.

Theorem 3.5. For every graph g and every vertex v with degree at least 2, we have the following
equi-satisfiability relation.

(1) g ∼
⋃

h1 h2 : Graph
{h1, h2} ∈ 2-partitions of link(g,v)

(h1 ∨ h2)∧ rest(g,v).

For every vertex v of g with degree 1, we have g ∼ rest(g,v).

Proof. For vertices v of degree 1, the theorem states that we can delete the single edge e incident
on v without affecting the satisfiability status of g. This is true because any (x : Cnf) ∈ g can be
written as x = y ∧ (c∨ v) or x = y ∧ (c∨ v), where (y : Cnf) ∈ rest(g,v), and (c : Clause) such that
c ∨ v is a clause supported on the edge e. Assigning v to true and false respectively leaves us with
the result x ∼ y, and thus g ∼ rest(g,v).

We now consider the case where degree of v in g is at least 2. Since the star and the rest together
form a partition of the edge set of a graph, we can write g = star(g,v)∧ rest(g,v). Since we know
from Lemma 3.1 that g ∼ g[v], we can also write g ∼ star(g,v) [v] ∧ rest(g,v).

Since graph conjunction is defined as the pairwise conjunction of the Cartesian product of under-
lying Cnfs, we can infer that graph disjunction commutes with set union. Thus, it suffices to show
that

star(g,v)[v] =
⋃

h1 h2 : Graph
{h1, h2} ∈ 2-partitions of link(g,v)

(h1 ∨ h2) .

Suppose (x : Cnf) ∈ star(g,v)[v]. Then, there exists a (y : Cnf) ∈ star(g,v) such that x =
y[v]∨ y[v]. Potentially, there are four types of clauses in y — those that contain the literal v, those
that contain v, contain both, or contain neither. The last two cases are not possible. A clause
cannot contain both v and v because otherwise the edge corresponding to the clause will be incident
on the vertex v twice, which is something that the definition of an edge does not allow. A case
where a clause contains neither v nor v is impossible because the Cnf y belongs to the star of g at
v.

We can therefore partition y into y1 containing clauses that contain v, and y2 containing clauses
that contain v, i.e. we can write y = y1 ∧ y2. Thus, x = y[v] ∨ y[v] = (> ∧ y2[v]) ∨ (y1[v] ∧ >) =

12 VAIBHAV KARVE AND ANIL N. HIRANI

y2[v]∨y1[v]. Let h1 and h2 be the graphs that support y1[v] and y2[v] respectively. We have shown
that x ∈ h1 ∨ h2. Furthermore, h1 and h2 form a 2-partition of link(g) since y1 and y2 form a
2-partition of the Cnf y in star(g,v). Generalizing this to all the different Cnfs x in star(g,v)[v],
we have shown that

star(g,v)[v] ⊆
⋃

h1 h2 : Graph
{h1, h2} ∈ 2-partitions of link(g,v)

(h1 ∨ h2) .

Conversely, suppose (x : Cnf) ∈ h1 ∨ h2, such that {h1, h2} is some 2-partition of link(g,v).
Then, we can factor x as x = x1 ∨ x2, for some Cnfs x1 and x2 such that x1 ∈ h1 and x2 ∈ h2.
Consider then the Cnf y given by y = (x1 ∨ v) ∧ (x2 ∨ v). Firstly, we observe that x = y[v] ∨ y[v].
Secondly, we note that y ∈ star(g,v) since the effect of disjuncting with v is to extend each clause
in x1 and x2 by a literal in v. Thus, we can write x ∈ star(g,v)[v]. We have now shown that

star(g,v)[v] ⊇
⋃

h1 h2 : Graph
{h1, h2} ∈ 2-partitions of link(g,v)

(h1 ∨ h2) .

�

An implementation of the right side of (1) in Python using our graphsat package is in Appendix
D. Details of the graphsat package will be provided in a separate publication. The source code of
graphsat is available at [3].

Next, we will state two corollaries that can be turned into a test for satisfiable graphs. These
corollaries are turned into procedures for testing the satisfiability status of a graph and are presented
in detail later in this section.

Corollary 3.5.1. Let g be a graph and let v be a vertex of g. If g is unsatisfiable, then there
exists a 2-partition {h1,h2} of link(g,v) such that both (h1 ∧ rest(g,v)) and (h2 ∧ rest(g,v)) are
unsatisfiable.

Proof. If g is unsatisfiable, then so is the set (h1 ∨ h2) ∧ rest(g,v) for some 2-partition {h1, h2}
of link(g,v). The result follows from Proposition 8. �

Corollary 3.5.2. Let g be a graph and let v be a vertex of g. If either one of (h1 ∧ rest(g,v))
or (h2 ∧ rest(g,v)) is totally satisfiable for every 2-partition {h1,h2} of link(g,v), then g itself is
totally satisfiable.

Proof. This is the contrapositive of Corollary 3.5.1. �

The following procedures for checking graph satisfiability status use Corollary 3.5.2.

Procedure 3.1. A non-recursive procedure for checking that a graph g is totally satisfiable is as
follows —

(1) Pick a vertex v of g (the vertex of lowest degree will make the procedure easier).
(2) Pick a 2-partition {h1,h2} of link(g,v), compute the satisfiability status of (h1 ∧ rest(g,v))

and (h2 ∧ rest(g,v)). Satisfiability status of each graph can be checked using a graph
satchecker (see §5).

(3) If both are unsatisfiable then the result is inconclusive and we can exit the procedure
(this follows from Remark 2.2). If either of these is totally satisfiable, then move on the
next 2-partition and repeat Step 2.

(4) If all 2-partitions have been exhausted, then g is totally satisfiabile.

Note that in this procedure, once a vertex has been picked, the graphs used in Step 2 are both
smaller than g and do not use the vertex v. Although the graphs in Step 2 are smaller, there
are many more graphs to check since we have to check all possible 2-partitions. Hence, a naive
application of Procedure 3.1 does not necessarily improve the efficiency of checking the satisfiability

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 13

of a graph. The real application of this procedure is to serve as a step in the recursion outlined in
the procedure below.

Procedure 3.2. This procedure is a recursive version of Procedure 3.1. It checks the satisfiability
status of a graph g.

(1) If g is small, i.e. 3 vertices or fewer, then check it using a graph satchecker (see §5). If g
is not small, we pick a vertex v of g (the vertex of lowest degree will make the procedure
easier).

(2) Pick a 2-partition {h1,h2} of link(g,v). Let g1 = (h1 ∧ rest(g,v)) and g2 = (h2 ∧
rest(g,v)). We can think of g as being the parent graph of its child graphs g1 and g2.

(3) The parent graph is totally satisfiable if either one of its child graphs is totally satisfiable
(this follows from Corollary 3.5.2). To check satisfiability-status of each child graph gi, go
back to Step 1. but with gi in place of g and a vertex vi of gi in place of v.

(4) If both child graphs are unsatisfiable, then check the parent graph using a graph satchecker
(see §5).

(5) If either child graph is totally satisfiable, then conclude that their parent graph is satisfiable.
(6) Once we have backtracked all the way back to the original graph g, we can exit the procedure

with a result of totally satisfiable or unsatisfiable.

This procedure has several advantages over Procedure 3.1. Firstly, the recursion creates smaller
graphs, each of which can be checked more quickly. Secondly, unlike Procedure 3.1, Procedure
3.2 never returns an inconclusive result. However, this comes at the potential cost of having to
backtrack all the way to the original graph g and then having to sat-check the entire graph. Thirdly,
the algorithm can be parallelized and memoized (storing and using the satisfiability statuses of
graphs already seen when checking the satisfiability of new graphs). This helps in mitigating the
potential slowdowns caused by having to now many graphs, since each recursion of Procedure 3.2
adds exponentially more graphs that need to be checked.

Procedure 3.3. Procedure for checking satisfiability status of a graph g using the process of “graph
completion”.

(1) Choose a vertex v of g (the vertex of lowest degree will make the procedure easier).
(2) Compute the set of Cnfs

A =
⋃

h1 h2 : Graph
{h1, h2} ∈ 2-partitions of link(g,v)

(h1 ∨ h2)∧ rest(g,v).

(3) Construct a set of graphs {gi | i ∈ I} for some index set I such that A ⊆
⋃

i∈I gi. One way
to construct this is to look at the image set of A under the map that sends a Cnf to the
graph that supports it. We call this process “graph completion”.

(4) If every gi is totally satisfiable, then g is totally satisfiable. If not, then g is incon-
clusive.

(5) To check the satisfiability status of gi, we can recursively call this procedure on each gi in
place of g.

We note that the run-time complexity of these procedures has not been analyzed.
The trouble with Procedures 3.1 and 3.3 is that it can only prove the total satisfiability of a

graph. If the graph g is unsatisfiable, then the procedure is inconclusive. It is possible to prove that
a graph is totally satisfiable using this procedure, but not that it is unsatisfiable. This shortcoming
can however be mitigated somewhat by our choice of vertex v. We will prefer using a vertex of low
degree to as to ensure a smaller size of link(g,v). Picking a vertex of degree d results in a link of
size d. The number of nonempty partitions of the link are 2d−1− 1. (We only care about nonempty

14 VAIBHAV KARVE AND ANIL N. HIRANI

partitions because the empty partition terms do not affect satisfiability.) Since d appears in the
exponent of this count, we choose a vertex of lowest possible degree d.

4. Graph reduction rules

This section states some global graph rewriting rules that leave the satisfiability status of a graph
unchanged. We call these graph reduction rules. Using the graph local rewriting theorem (Theorem
3.5), we prove the invariance of satisfiability status of graphs under these reduction rules. The
equi-satisfiability results in all calculations in this section follow directly from the theorem.

These reduction rules yield a set of simple search-and-replace rules that can be used to simplify
a graph, make it smaller, and then subject it to a graph-satchecker. In the following subsections,
we will always label the rest of the graph g at vertex 1 as s. Since s has no edges incident on 1,
when decomposing locally at that vertex, we can always write s[1] = s.

We start by proving a lemma that we use often in this section.

Lemma 4.1. If g1 and g2 are graphs such that g1 is a subgraph of g2, then (s ∧ g1) ∪ (s ∧ g2) ∼
s ∧ g2.

Proof. From Lemma 3.2, we know that g1
A⊥
==⇒ g2. From Proposition 2.1.9, the result follows. �

4.1. Deleting leaf vertices. We show the effect of local rewriting at vertices with a single edge
incident on them (not counting edge multiplicities), i.e. at leaf vertices. Applying local graph
rewriting (Theorem 3.5) to leaf vertices incident on triangles of varying multiplicities we get —

(1) s ∧ 1231 ∼ s.
(2) s ∧ 1232 ∼ s∧(23 ∨ 23) = s∧(> ∪ 23) = s ∧ 23.
(3) s ∧ 1233 ∼ s∧(23 ∨ 232) = s∧(23 ∪>) = s ∧ 23.
(4) s ∧ 1234 ∼ s∧(23 ∨ 233)∪s∧(232 ∨ 232) = s∧(23∪>)∪s∧(232∪23∪>) = (s ∧ 232)∪

(s ∧ 23) ∪ s ∼ s ∧ 232. This last equi-satisfiability follows from Lemma 4.1.
All the graph disjunctions used in 1. 2. and 3. above can be found in Tables 5 and 6. The dis-

junctions in 4. are computed using the operations.graph_or function from our graphsat package.
Code-snippets and their outputs are provided below for reference but these can also be checked by
hand following the theory explained in §2.5.5.

(python3.9) (scratch) «calculation1»
import cnf, mhgraph
from operations import graph_or

g1 = mhgraph.mhgraph([[2, 3]])
g3 = mhgraph.mhgraph([[2, 3]]*3)

for x in graph_or(g1, g3):
print(x)

Output 23 ∨ 233: (<Bool: TRUE>) (2,3) (2,-3) (-2,3) (-2,-3)

(python3.9) (scratch) «calculation2»
import cnf, mhgraph
from operations import graph_or

g2 = mhgraph.mhgraph([[2, 3]]*2)

for x in graph_or(g2, g2):
print(x)

Output 232 ∨ 232: (<Bool: TRUE>) (2,3) (2,-3) (-2,3) (-2,-3) (2,3)(2,-3) (2,3)(-2,3) (2,3)(-2,-3)
(2,-3)(-2,3) (2,-3)(-2,-3) (-2,3)(-2,-3)

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 15

We generalize all these calculations in Proposition 4.2. We first state the following observation
without proof.

Remark 4.1. Let k ∈ N, and 0 < k. For every m,n ∈ N such that 0 < m < 2k and 0 < n < 2k, we
have

(1 · · · k)m ∨ (1 · · · k)n =

min(m,n)⋃
i=m+n−2k

(1 · · · k)i,

where it is understood that we will omit writing terms (1 · · · k)i for i < 0 and we will write > in
place of (1 · · · k)0.
Proposition 4.2. Let s be a graph not incident on the vertex 1. Let k ∈ N, such that k ≥ 1. Then,
for n ∈ N, we have —

• s ∧ (12 · · · k) ∼ s
• s ∧ (12 · · · k)n ∼ s ∧ (2 · · · k)bn/2c, if 1 < n < 2k.
• s ∧ (12 · · · k)n ∼ ⊥, if n ≥ 2k.

Proof. If n = 1, then by the result follows from the local rewriting theorem (Theorem 3.5). If
n > 1, then we can compute link(s ∧ (12 · · · k)n, 1) = (2 · · · k)n. Then, every nonempty 2-
partition of the link is of the form {h1,h2}, where h1 = (2 · · · k)m and h2 = (2 · · · k)n−m, for
some 1 ≤ m ≤ n− 1. Using Remark 4.1, we infer that

h1 ∨ h2 = (2 · · · k)m ∨ (2 · · · k)n−m =

min{m, n−m}⋃
i=n−2k−1

(2 · · · k)i.

Thus, from Theorem 3.5 we have

s ∧ (12 · · · k)n ∼
n−1⋃
m=1

min{m, n−m}⋃
i=n−2k−1

s ∧ (2 · · · k)i =
bn/2c⋃
i=0

s ∧ (2 · · · k)i.

Using Lemma 4.1, we can conclude that s ∧ (12 · · · k)n ∼ s ∧ (2 · · · k)bn/2c. �

4.2. Smoothing edges. Having dealt with leaf vertices (i.e. vertices of degree 1), we now consider
vertices of degree 2. Edges and hyperedges incident at such vertices can be “smoothed” without
affecting the satisfiability status of a graph. We call these operations smoothing because each
operation results in graphs with fewer vertices.

We can smooth out the intersection of two simple edges as s ∧ 12 ∧ 13 ∼ s∧(2 ∨ 3) = s ∧ 23.
Similarly, we can smooth out the intersection of two triangles sharing a common edge as s ∧ 123 ∧ 124 ∼
s∧(23 ∨ 24) = s∧(> ∪ 234) ∼ (s ∧ 234). This last equi-satisfiability is obtained from Lemma
4.1.

Smoothing out the intersection of two triangles sharing a common vertex results in a size 4
hyperedge — s ∧ 123 ∧ 145 ∼ s∧(23 ∨ 45) = s ∧ 2345. Smoothing at an edge-triangle pair
with a common vertex yields s ∧ 12 ∧ 134 ∼ s∧(2 ∨ 34) = s ∧ 234.

We state without proof a general pattern for smoothing of hyperedges incident at a common
vertex. For k1, k2 ∈ N, we have —

s ∧ (12 · · · k1) ∧ (k1 + 1 · · · k2) ∼ s ∧ (12 · · · k2)

4.3. Tucking edges. We now prove a series of reduction rules that allow deletion of degree 2 or
higher vertices, resulting in graphs with fewer edges. Visually, these operations look like tucking-in
of an extended fin of the graph.

Tucking-in at an edge-hyperedge intersection incident at a common edge yields s ∧ 12 ∧ 123 ∼
s∧(2 ∨ 23) = s∧(23 ∪ >) = (s ∧ 23) ∪ s ∼ s ∧ 23. This last equi-satisfiability follows from
Lemma 4.1.

16 VAIBHAV KARVE AND ANIL N. HIRANI

Degree 3 intersections have reduction rules for the following cases —
(1) A hyperedge with an edge incident on two of its three sides, i.e. s ∧ 12 ∧ 13 ∧ 123.
(2) A hyperedge of multiplicity 2, with an edge incident on one of its sides, i.e. s ∧ 12 ∧ 1232.

(3) A hyperedge with an edge of multiplicity two incident on one of its sides, i.e. s ∧ 122 ∧ 123.

For instance 1, we get —
s ∧ 12 ∧ 13 ∧ 123 ∼ s∧((2 ∧ 23)∨3) ∪ s∧((3 ∧ 23)∨2) ∪ s∧((2 ∧ 3)∨23)

= s∧(3 ∪ 23) ∪ s∧(2 ∪ 23) ∪ s∧(23 ∪ >)
= s ∪ (s ∧ 2) ∪ (s ∧ 3) ∪ (s ∧ 23)

∼ (s ∧ 2) ∪ (s ∧ 3) ∪ (s ∧ 23)

∼ (s ∧ 2) ∪ (s ∧ 3)

For instance 2, we get —
s ∧ 12 ∧ 1232 ∼ s∧(2 ∨ 232) ∪ s∧(23∨(2 ∧ 23))

= s∧(> ∪ 2 ∪ 23) ∪ s∧(> ∪ 23)

= s ∪ (s ∧ 2) ∪ (s ∧ 23)

∼ (s ∧ 2) ∪ (s ∧ 23)

∼ s ∧ 2

For instance 3, we get s ∧ 122 ∧ 123 ∼ s∧(2∨(2 ∧ 23))∪s∧(23 ∨ 22). From Table 7, we have

> ∪ 2 ∪ 23 ⊂ 2∨(2 ∧ 23) ⊂ > ∪ 2 ∪ 23 ∪ (2 ∧ 23).

Thus, we can write —

s∧(> ∪ 2 ∪ 23) ∪ (s∧23) ⊂ s ∧ 122 ∧ 123 ⊂ s∧(> ∪ 2 ∪ 23 ∪ (2 ∧ 23)) ∪ (s∧23)
Applying the γ graph-satisfiability map, yields —

γ(s∧>)∧γ(s∧2)∧γ(s∧23) ← γ(s ∧ 122 ∧ 123) ← γ(s∧>)∧γ(s∧2)∧γ(s∧23)∧γ(s∧2 ∧ 23)

This can in turn be simplified (using the properties of γ detailed in §2.5.2, the Lemmas 3.2 and
3.4, and the techniques outlined in Sec 2.5.5) —

γ(s∧2) ← γ(s ∧ 122 ∧ 123) ← γ(s∧2 ∧ 23)

This last result can be seen as a partial rewrite rule owing to the presence of the subset-superset
pair.

4.4. Opening a triple-intersection vertex. We can replace a three-hyperedge intersection in-
cident on a common vertex with three simple edges on the boundary. The proof of this reduction
rule is as follows —

s ∧ 123 ∧ 124 ∧ 134 ∼ s∧(23∨(24 ∧ 34)) ∪ s∧(24∨(23 ∧ 34)) ∪ s∧(34∨(23 ∧ 24))

= s∧(> ∪ 23 ∪ 234) ∪ s∧(> ∪ 24 ∪ 234) ∪ s∧(> ∪ 34 ∪ 234)

= s ∪ (s ∧ 23) ∪ (s ∧ 24) ∪ (s ∧ 34) ∪ (s ∧ 234)

∼ (s ∧ 23) ∪ (s ∧ 24) ∪ (s ∧ 34)

5. Satisfiability of mixed hypergraphs

In this section we provide a list of known totally satisfiable and unsatisfiable mixed-hypergraphs
i.e. hypergraphs which have edges of size 1, 2 or 3. List of candidate hypergraphs are gener-
ated programmatically using SageMath’s nauty package [4], which has various tools for generating
canonically-labeled, non-isomorphic graphs with certain properties.

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 17

We list below several methods by which the satisfiability of a graph may be checked using our
graphsat package —

(1) If a graph is finite and small (fewer than 6 hyperedges), we can sat-check it by passing it to a
graph satchecker. Such a satchecker can be found in the mhgraph_pysat_satcheck function
in the sat.py module.

(2) If a graph is finite but not too small (7 to 20 hyperedges), we can decompose it using local
rewriting at the min-degree vertex. For this, we use the decompose function found in the
graph_rewrite.py module.

(3) If a graph is finite and big (20+ hyperedges), then we can reduce it to a smaller graph by
passing it to the make_tree function in the operations.py module.

(4) Lastly, if a graph is infinite, we have to work out its satisfiability status manually using re-
duction rules. Reduction rules themselves can be generated by the local_rewrite function
in the graph_rewrite.py module.

Figure 1 shows a selection of unsatisfiable hypergraphs up to vertex size 5. A larger list can be
found in the Appendix C.

5.1. Minimality of unsatisfiable hypergraphs. In the case of multi-graphs, we showed in [2]
that satisfiability is invariant under homeomorphisms. We could then define a minimal unsatisfiable
multi-graph to be one which is unsatisfiable, with every proper topological minor being totally
satisfiable.

In the case of multi-hypergraphs, we have instead a list of reduction rules. The reduction rules
make it harder to define minimality due to several reasons —

(1) Given a list of reduction rule, it is a computationally expensive to check if any of these rules
apply to a given graph.

(2) For most reduction rules, the right side (which is what we obtain after rewriting) is not a
single graph — it is instead a union of graphs. This means that any notion of minimality
for hypergraphs must incorporate the effect of rewriting as a union of graphs instead of a
single graph.

(3) Our list of reduction rules is not complete. We may find more reduction rules by rewriting
at higher degree vertices and carrying out longer computations. Each additional reduction
rule could make the minimality criterion stricter and would shrink the size of any minimal
set of unsatisfiable hypergraphs.

(4) Uniqueness of the minimal set of unsatisfiable hypergraphs is not guaranteed owing to the
complexity of the reduction rules.

5.2. Computational logistics. In this section we discuss the logistical setup used for carrying out
all the calculations in this paper, along with a mention of the challenges posed by continuing these
computations on bigger graphs in the face of exponentially more cases that need checking.

A computational procedure for finding all unsatisfiable looped-multi-hypergraphs can be carried
out as follows —

Step 1.: Start with all looped-multi-hypergraphs sorted from smallest to largest. This can be
done by calling nauty from inside SageMath. We use nauty to generate all graphs with the
following properties inside a specified vertex range —
• the graph must be connected.
• total number of vertices must lie within specified range.
• edge sizes can be 1 (loops), 2 (simple edges), or 3 (hyperedges).
• we disallow edges of size 4 or higher in order to keep the computational task tractable.
• we specify that the minimum vertex degree of the graph should be 2 (since leaf vertices
are known to be reducible).
• we allow an edge of size k to only have multiplicity less than 2k.

18 VAIBHAV KARVE AND ANIL N. HIRANI

Figure 1. A selection of known unsatisfiable looped-multi-hypergraphs.

Step 2.: Pick a graph and apply all known reduction rules to it.
Step 3.: Sat-check the irreducible part of the graph left over from Step 2 using brute-force

strategy.
Step 4.: If totally satisfiable, then pick the next graph and go back to Step 2.
Step 5.: If unsatisfiable, then add the irreducible part to the list of known “minimal criminals”.

While this procedure allows us to search for small unsatisfiable graphs, it is clear that we have
to contend with an exponential blowup in the number of graphs as well as an exponential blowup

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 19

in the number of Cnfs that need to be sat-checked as we keep increasing the vertex count. Table 2
tabulates the number of graphs for different vertex ranges.

Table 2. Exponential blowup in the number of graphs with increasing vertex
count.

Number of connected simple graphs with less than 7 vertices 143
Number of minimal unsatisfiable irreducible simple graphs 4

Number of connected looped-multi-hypergraphs with less than 6 vertices 10080
Number of minimal unsatisfiable irreducible L-M-H-graphs 202

Number of connected looped-multi-hypergraphs with less than 7 vertices 48,364,386
Number of minimal unsatisfiable irreducible L-M-H-graphs unknown

6. Satisfiability of triangulations

In this section we check a list of common/standard hypergraphs having edges of size exactly
3. These hypergraphs can be drawn as triangulations of various surfaces and are thus of interest
when viewing GraphSAT from a topological point of view. We present computationally obtained
satisfiability and unsatisfiability results. The choice of structures we study here is less systematic
and more driven by ease of calculation.

6.1. Thickening of graph edges. We outline below a method to create triangulations starting
with simple graphs, such that the satisfiability status in going from the simple graph to the trian-
gulation remains unchanged.

The process involves a local rewrite of every simple edge ab in a graph with the hyperedges
abc ∧ acd ∧ bcd, where c and d are new vertices not previously appearing in the graph.

For example, since ab4 is an unsatisfiable graph, we can thicken all its edges into hyperedges to
form the triangulation

ab1 ∧ a12 ∧ b12 ∧ ab3 ∧ a34 ∧ b34 ∧ ab5 ∧ a56 ∧ b56 ∧ ab7 ∧ a78 ∧ b78.
This thickening process is shown in Figure 2.

Figure 2. Thickening of the edges of ab4 shown step-by-step.

Similarly, thickening of the unsatisfiable graph ab2 ∧ bc2 results in the unsatisfiable triangulation
shown in Figure 3. This triangulation is planar and can therefore be embedded in any surface. Thus,
every surface has an unsatisfiable triangulation.

We also note that not all unsatisfiable triangulations are thickenings of unsatisfiable simple graphs.
To prove that graph satisfiability is invariant under thickening of edges, we observe the following —

s ∧ 123 ∧ 134 ∧ 234 ∼ s ∧ 1232 (using edge-smoothing reduction rule)
∼ s ∧ 12 (using leaf vertex reduction rule)

20 VAIBHAV KARVE AND ANIL N. HIRANI

Figure 3. Thickening of the edges of ab2 ∧ bc2.

These reduction rules can be applied only because s does not have any edges incident on vertices 3
and 4 since there vertices are newly introduced by the thickening process.

6.2. Tetrahedron and prisms. The tetrahedron’s wire-frame structure, i.e. its edges form the
graph K4, a known unsatisfiable graph. The faces form the triangulation abc ∧ acd ∧ abd ∧ bcd.
Using the reduction rule from §4.4 gives

Tetrahedron ∼ abc ∧ ab ∪ abc ∧ ac ∪ abc ∧ bc
∼ ab ∪ ac ∪ bc
∼ > ∪ > ∪ >
= >

Thus the tetrahedron is totally satisfiable.
On the other hand the triangular prism has two possible minimal triangulations —
(1) The symmetric triangulation, given by

123 ∧ 125 ∧ 134 ∧ 145 ∧ 236 ∧ 256 ∧ 346 ∧ 456.

(2) The asymmetric triangulation, given by

123 ∧ 125 ∧ 136 ∧ 145 ∧ 146 ∧ 236 ∧ 256 ∧ 456.

These triangulations are shown in Figure 4. Passing them to the decompose function from the
graph_rewite module tells us that both triangulations are totally satisfiable.

(a) The symmetric triangulation. (b) The asymmetric triangulation.

Figure 4. Minimal triangulations of a triangular prism

(python3.9) (scratch) «prism-calculation»
import mhgraph as mhg
import graph_rewrite as grw

prism1: mhg.MHGraph = mhg.mhgraph([[1,2,3], [1,2,5], [1,3,4], [1,4,5],
[2,3,6], [2,5,6], [3,4,6], [4,5,6]])

grw.decompose(prism1)

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 21

prism2: mhg.MHGraph = mhg.mhgraph([[1,2,3], [1,2,5], [1,3,6], [1,4,5],
[1,4,6], [2,3,6], [2,5,6], [4,5,6]])

grw.decompose(prism2)

Output:

(1, 2, 3)¹,(1, 2, 5)¹,(1, 3, 4)¹,(1, 4, 5)¹,(2, 3, 6)¹,(2, 5, 6)¹,(3, 4, 6)¹,(4, 5, 6)¹
is SAT

(1, 2, 3)¹,(1, 2, 5)¹,(1, 3, 6)¹,(1, 4, 5)¹,(1, 4, 6)¹,(2, 3, 6)¹,(2, 5, 6)¹,(4, 5, 6)¹
is SAT

6.3. Triangulation of a Möbius strip. A Möbius strip can be triangulated as

124 ∧ 146 ∧ 235 ∧ 245 ∧ 346 ∧ 356

(also shown in Figure 5). Using graph_rewrite.decompose, we conclude that this triangulation is
totally satisfiable.

Figure 5. Triangulation of a Möbius strip

(python3.9) (scratch) «mobius»
import mhgraph as mhg
import graph_rewrite as grw

mobius_strip: mhg.MHGraph = mhg.mhgraph([[1, 2, 4], [1, 4, 6], [2, 3, 5],
[2, 4, 5], [3, 4, 6], [3, 5, 6]])

grw.decompose(mobius_strip)

Output:

(1, 2, 4)¹,(1, 4, 6)¹,(2, 3, 5)¹,(2, 4, 5)¹,(3, 4, 6)¹,(3, 5, 6)¹ is SAT

6.4. Minimal triangulation of the real projective plane. The minimal triangulation of RP2

has six vertices and is unique up to relabeling of vertices. This triangulation is a classic result and
is often referred to in literature as RP2

6. It can be written as
123 ∧ 326 ∧ 461 ∧ 412 ∧ 526 ∧ 561 ∧ 153 ∧ 364 ∧ 425 ∧ 534, and is shown in Figure 6. Using
graph_rewrite.decompose, we conclude that this triangulation is totally satisfiable.

(python3.9) (scratch) «RP2»
import mhgraph as mhg
import graph_rewrite as grw

rp2: mhg.MHGraph
rp2 = mhg.mhgraph([[1, 2, 3], [3, 2, 6], [4, 6, 1], [4, 1, 2], [5, 2, 6],

[5, 6, 1], [1, 5, 3], [3, 6, 4], [4, 2, 5], [5, 3, 4]])
grw.decompose(rp2)

Output:

(1, 2, 3)¹,(3, 2, 6)¹,(4, 6, 1)¹,(4, 1, 2)¹,(5, 2, 6)¹,(5, 6, 1)¹,(1, 5, 3)¹,
(3, 6, 4)¹,(4, 2, 5)¹,(5, 3, 4)¹ is SAT

22 VAIBHAV KARVE AND ANIL N. HIRANI

Figure 6. Minimal triangulation of the real projective plane, denoted RP2
6.

6.5. Minimal triangulation of a Klein bottle. A Klein bottle has six distinct 8-vertex trian-
gulations [1]. These triangulations all contain 16 distinct hyperedges and have a minimum vertex
degree of 6. These large numbers make it difficult to determine the satisfiability status of these
triangulations without committing to significant computational resources.

Of the six distinct triangulations, we checked but one — the “242 triangulation”, given by the
faces
123 ∧ 372 ∧ 153 ∧ 175 ∧ 147 ∧ 162 ∧ 642 ∧ 168 ∧ 148 ∧ 248 ∧ 643
∧374 ∧ 685 ∧ 653 ∧ 825 ∧ 275.

Passing it to graph_rewrite.decompose and waiting for several hours of computations results
in the discovery that the 242 configuration is unsatisfiable. In fact, it is unsatisfiable even if we
remove the 825 ∧ 275 subgraph!

The 242 triangulation and its unsatisfiable subgraph are shown in Figure 7 for reference.

Figure 7. The “242 triangulation” of a Klein bottle and its unsatisfiable
subgraph.

6.6. Minimal triangulation of a torus. The torus can be minimally triangulated [5] as —
126 ∧ 267 ∧ 237 ∧ 371 ∧ 674 ∧ 745 ∧ 715 ∧ 156 ∧ 412 ∧ 452 ∧ 523
∧563 ∧ 634 ∧ 431.

This triangulation is shown in Figure 8 and is found to be unsatisfiable by the
graph_rewrite.decompose function. In fact, it is unsatisfiable even if we remove the 634 ∧ 431
subgraph.

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 23

Figure 8. Minimal triangulation of a torus and its unsatisfiable subgraph.

7. Satisfiability of infinite graphs

We recall from §2.5 that V is an arbitrary countable set, edges are nonempty sets of vertices,
and graphs are nonempty multisets of edges. This definition does not exclude edges or graphs from
being of countably infinite size. A graph with infinite edges, or edges of infinite size is an infinite
graph.

We note that Cnfs, in a similar vein, can also be infinite. Infinite Cnfs either have infinitely many
clauses, or have clauses of infinite size.

The notions of assignment, satisfiability, unsatisfiability — all carry over to infinite graphs and
infinite Cnfs. The only notions that do not carry over are the questions of computational complexity
since we cannot talk of program run-time for infinite instances of GraphSAT.

7.1. Infinitely many disconnected loops. The graph 1 ∧ 2 ∧ 3 ∧ . . . is a graph made of count-
ably infinite disconnected self-loops. This graph is totally satisfiable because every connected com-
ponent of it is.

7.2. Uniform infinite trees. For examples of totally satisfiable infinite graphs that are connected,
we consider a family of tree graphs. For positive integer n, let Tn denote an infinite tree graph
with each vertex being connected to exactly n different vertices via edges of size 2. These are also
sometimes referred to in the literature as infinite trees of uniform degree n.

Each Tn is in fact totally satisfiable since we proved in [2] that every tree is totally satisfiable
and since the proof did not depend on the finiteness of the graph, the theorem still hold for infinite
graphs .

Another intuitive way to see that T2, for example, is totally satisfiable is that (at the level of
Cnfs) each vertex can be used to satisfy its adjacent clause (see Figure 9). This results in a chain
of assignments and each clause is satisfied in a style reminiscent of Hilbert’s famous infinite hotel.

7.3. Infinite ray graph. Proof by demonstrating a vertex assignment also for other infinite graphs.
We should keep in mind that a valid vertex assignment can only help us remove a single adjacent
edge (or hyperedge) per vertex. Also, the existence of a vertex assignment implies that the graph
in question is totally satisfiable, but its nonexistence does not prove that the graph is unsatisfiable.

We use this technique to argue that the infinite ray graph with a looped tail (see Figure 9) is
totally satisfiable. At the level of Cnfs, we can see that the tail vertex can be used to satisfy the loop.
The vertex next to the loop satisfies the last edge, the vertex after that satisfies that last-but-one
edge, and so on. This assignment is shown in the figure using arrows. This proves that the infinite
ray as well as the infinite ray with looped tail are both totally satisfiable graphs.

24 VAIBHAV KARVE AND ANIL N. HIRANI

(a) T2 (the infinite line graph) can be
satisfied by vertex assignments shown
using blue arrows.

(b) The infinite ray graph is similarly
totally satisfiable.

(c) The infinite ray graph with a looped on the tail is similarly totally
satisfiable.

Figure 9. Infinite line and ray graphs are totally satisfiable using vertex
assignment. Each edge is satisfied by a unique vertex.

7.4. Bi-infinite strip. We next consider a thickened version of T2 made of hyperedges, as shown in
Figure 10. We call this is bi-infinite strip and claim that it is totally satisfiable. The assignment that
satisfies a given Cnf in this graph can be derived by using the arrows shown in the figure. Similarly,
the mono-infinite strip shown in Figure 10 is also totally satisfiable by the vertex assignment shown
in the figure.

7.5. Plane tiling with missing alternate tiles. Lastly, we consider the tiling of the plane with
alternate triangles and holes as shown in Figure 10. This triangulation can be satisfied by the vertex
assignment shown in the same figure.

7.6. Compactness theorem and infinite GraphSAT. A graph is totally satisfiable if and only
if every Cnf in it is satisfiable. The condition for every Cnf being satisfiable can itself be translated
into a large Cnf if we allow the introduction of new variables.

For example, consider the single-edge graph ab. There is a set of 4 Cnfs in the set ab, and by
relabeling the vertices, we can write γ(ab) = σ

(
(a1 ∨ b1)∧ (a2 ∨ b2)∧ (a3 ∨ b3)∧ (a4 ∨ b4)

)
. We call

this translation map from Graphs to Cnfs τ (short for translation).
We use this map τ to change the total-satisfiability question of a graph g from a universal

quantification over all Cnfs in g to an existential quantification over all truth-assignments for the
Cnf τ (g). This change to existential quantification allows us to apply the Compactness Theorem.

In mathematical logic, the Compactness Theorem states that a set of first-order sentences has
a model if and only if every finite subset of it has a model. In the context of GraphSAT, this
means that an infinite graph is totally satisfiable if and only if every finite subgraph of it is totally
satisfiable. This means we can always restrict out attention to studying only finite graphs. It also
means that any unsatisfiable infinite graph must have an unsatisfiable finite subgraph.

8. Conclusion and future directions

An outcome of this work is the creation of a new graph decision problem — GraphSAT. In [2]
we showed that 2GraphSAT is in complexity class P and has a finite obstruction set containing
four simple graphs [2]. The natural next step of exploring 3GraphSAT gave rise to the local graph
rewriting theorem (Theorem 3.5), which leveraged the fact that taking a union over all possible
vertex-assignments preserves the satisfiability status of a graph. Using this theorem, we were able
to generate a list of graph reduction rules and an incomplete list of obstructions to satisfiability of
multi-hypergraphs.

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 25

(a) The bi-infinite strip is totally
satisfiable using the vertex assignments
shown using blue arrows.

(b) The mono-infinite strip is similarly
totally satisfiable.

(c) This triangulation is formed by taking a triangular uniform plane
tiling and removing alternate tiles. It is totally satisfiable using the vertex
assignments shown.

Figure 10. Triangulations having vertex-assignments that use a single vertex to
satisfy each hyperedge are totally satisfiable.

An incomplete list of known unsatisfiable looped-multi-hypergraphs (pictured in Figure 1 and
listed in Appendix C.

8.1. Future directions. We showed that the complexity class of 2GraphSAT is P while the
complexity class for 3GraphSAT is not known. Moreover, the effect of local graph rewriting on
3GraphSAT’s complexity class is not known. Hence a key research question that arises is whether
local rewriting preserves complexity, and whether it makes 3GraphSAT easier in practice.

We have an incomplete list of unsatisfiable looped-multi-hypergraphs. Questions that arise within
this context are — whether the number of essential sat-invariant graph reduction rules is finite?
Even if the reduction rules are not finite, are they implementable in polynomial-time. Even if they
are not implementable in polynomial time, it is possible that there is a polynomial-time check for
demonstrating that none of the reduction rules apply to a given graph.

It is also not known if the number of minimal unsatisfiable graphs under these reduction rules
is finite. So far we have found more than 200 distinct unsatisfiable and irreducible looped-multi-
hypergraphs with less than 7 vertices. If the complete list is infinite, it would imply that 3GraphSAT
is not in complexity class P.

If 3GraphSAT is in P, this would give us an easy P-time heuristic check for 3sat, simplifying
some 3sat cases, while not directly affecting the complexity class of 3sat.

Let Ka,b denote the complete a-uniform hypergraph on b vertices. To construct Ka,b, we can
start with b vertices and connect all

(
ba

)
combinations with a hyperedge of size a. We can also

think of this as the (a− 1)-skeleton of a (b− 1)-simplex.

26 VAIBHAV KARVE AND ANIL N. HIRANI

Table 3. A table showing the satisfiability statuses of complete uniform
hypergraphs. Non-obvious results are shown in boldface.

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 · · ·
a = 1 sat sat sat sat sat sat sat · · ·
a = 2 - sat sat unsat unsat unsat unsat · · ·
a = 3 - - sat sat unsat unsat unsat · · ·
a = 4 - - - sat sat sat unknown · · ·
a = 5 - - - - sat sat unknown · · ·
a = 6 - - - - - sat sat · · ·
a = 7 - - - - - - sat · · ·

... - - - - - - -

The hypergraph Ka,b’s satisfiability status is interesting because it combines the extreme of
having all possible hyperedges connected (which can force unsatisfiability) with the extreme of each
hyperedge being incident on a large number of vertices (which can force satisfiability).

For example, we know that K2,4 is K4, i.e. the complete simple graph on 4 vertices and is known
to be totally satisfiable. On the other hand, the graph K2,3 is C3 is known to be totally satisfiable.
Table 3 summarizes the known satisfiability statuses of various Ka,b graphs. As seen in the table,
the satisfiability-status of K4,7 and K5,7 are not known.

The generalized rule for n triangular hyperedges meeting at a common free vertex is not known.
We do know the reduction rule only for n = 3 —

s ∧ 123 ∧ 124 ∧ 134 ∼ s ∧ 23 ∪ s ∧ 24 ∪ s ∧ 34

Reduction rules for n ≥ 4 yield massive data-tables of resulting Cnfs, which we have so far been
unable to group into a convenient set of graphs.

Appendix A. Operator and notation summary

All operators defined in §2 are summarized in Table 4. These operators are written in increasing
order of binding-tightness. The order of binding-tightness can be used to disambiguate expressions
when multiple operators are used at the same time.

Table 4. Summary of all the operators.

Operator Context Meaning Remarks
Invisible glue between literals boolean disjunction binds tighter than

all other operators
, between clauses or Cnfs boolean conjunction also written as ∧
x1 acts on literals unary negation on literals also written as ¬x1

x[a] action of assignment on Cnf fa,Cnf(x) in §2.3
∼ between two Cnfs equi-satisfiable Cnfs equivalence rela-

tion
Invisible glue between vertices adjacency of vertices

en superscript for a (hyper)edge edge-multiplicity
, between edges, or graphs graph union also called the ad-

jacency of edges
∨ between two sets of Cnfs disjunction in §2.5.4
∧ between two sets of Cnfs conjunction in §2.5.4

g[v] action of vertex on a set of Cnfs assignment in §3.1
≤ between two graphs subgraph relation
� between two graphs shaved version
∼ between two sets of Cnfs equi-satisfiable graphs/sets binds looser than

all other operators

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 27

Appendix B. Standard graph disjunctions

Here we list tables of standard graph disjunctions that one may encountered when carrying out
local graph rewriting calculations. These tables are all generated using the graph_or function in the
operations.py module from our graphsat Python package. In §4 we use these disjunction results
to derive graph reduction rules — global rewrites that do not affect the satisfiability of a graph. In
§5.1, we describe an ongoing effort to describe the criterion for hypergraph minimality taking into
account a growing list of graph reduction rules.

The first two tables list graph disjunctions that can be written exactly as a union of graphs; the
third table lists graph disjunctions that can only be listed as a subset-superset pair.

Table 5. Graph
disjunctions where
size of h1 + size of
h2 is 2.

h1 h2 h1 ∨ h2

a ∨ a = > ∪ a
a ∨ b = ab
a ∨ bc = abc
a ∨ ab = > ∪ ab

ab ∨ cd = abcd
ab ∨ ac = > ∪ abc
ab ∨ ab = > ∪ ab

Table 6. Graph
disjunctions where size
of h1 + size of h2 is 3.

h1 h2 h1 ∨ h2

a ∨ a2 = a
a ∨ b2 = a
a ∨ ab2 = > ∪ a ∪ ab
a ∨ (b ∧ ab) = a ∪ ab

ab ∨ c2 = ab
ab ∨ (a ∧ c) = ab ∪ abc
ab ∨ a2 = ab
ab ∨ (a ∧ b) = > ∪ ab
ab ∨ (c ∧ ac) = ab ∪ abc
ab ∨ (c ∧ ab) = ab ∪ abc
ab ∨ (a ∧ cd) = ab ∪ abcd
ab ∨ (a ∧ ac) = > ∪ ab ∪ abc
ab ∨ (a ∧ bc) = > ∪ ab ∪ abc
ab ∨ (a ∧ ab) = > ∪ ab
ab ∨ (ab ∧ cd) = ab ∪ abcd
ab ∨ (ab ∧ ac) = > ∪ ab ∪ abc
ab ∨ ac2 = > ∪ ab ∪ abc
ab ∨ (ac ∧ bc) = > ∪ ab ∪ abc
ab ∨ ab2 = > ∪ ab

The above tables show that the possible graph disjunctions grow quickly with the edges partic-
ipating in the disjunction. This is why we stop at a maximum of three edges. For calculating the
graph disjunction of more edges, we can always use the graph_or function from the operations
module on each individual disjunction.

28 VAIBHAV KARVE AND ANIL N. HIRANI

Table 7. Subset-superset pairs for graph disjunctions where size of h1 + size of
h2 is at most 3.

Subset h1 h2 Superset
a ∨ (b ∧ c) ⊂ (ab ∧ ac)

ab ⊂ a ∨ (a ∧ b) ⊂ ab ∪ (a ∧ ab)
a ∨ (b ∧ cd) ⊂ (ab ∧ acd)

abc ⊂ a ∨ (a ∧ bc) ⊂ abc ∪ (a ∧ abc)
ab ⊂ a ∨ (b ∧ ac) ⊂ ab ∪ (ab ∧ ac)

a ∨ (b ∧ bc) ⊂ (ab ∧ abc)
> ∪ a ∪ ab ⊂ a ∨ (a ∧ ab) ⊂ > ∪ a ∪ ab ∪ (a ∧ ab)

a ∨ (bc ∧ de) ⊂ (abc ∧ ade)
a ∨ (bc ∧ bd) ⊂ (abc ∧ abd)
a ∨ bc2 ⊂ abc2

acd ⊂ a ∨ (ab ∧ cd) ⊂ acd ∪ (ab ∧ acd)
ab ∪ abc ⊂ a ∨ (ab ∧ bc) ⊂ ab ∪ abc ∪ (ab ∧ abc)

> ∪ ab ∪ ac ⊂ a ∨ (ab ∧ ac) ⊂ > ∪ ab ∪ ac ∪ (ab ∧ ac)
ab ∨ (c ∧ d) ⊂ (abc ∧ abd)
ab ∨ (c ∧ de) ⊂ (abc ∧ abde)

abc ⊂ ab ∨ (c ∧ cd) ⊂ abc ∪ (abc ∧ abcd)
abc ⊂ ab ∨ (c ∧ ad) ⊂ abc ∪ (abc ∧ abd)

ab ∨ (cd ∧ ef) ⊂ (abcd ∧ abef)
ab ∨ (cd ∧ ce) ⊂ (abcd ∧ abce)
ab ∨ cd2 ⊂ abcd2

abcd ⊂ ab ∨ (cd ∧ ac) ⊂ abcd ∪ (abc ∧ abcd)
> ∪ abc ∪ abd ⊂ ab ∨ (ac ∧ ad) ⊂ > ∪ abc ∪ abd ∪ (abc ∧ abd)
> ∪ abc ∪ abd ⊂ ab ∨ (ac ∧ bd) ⊂ > ∪ abc ∪ abd ∪ (abc ∧ abd)

abcd ⊂ ab ∨ (ac ∧ cd) ⊂ abcd ∪ (abc ∧ abcd)

Appendix C. List of known unsatisfiable graphs

Presented below is a list of known unsatisfiable hypergraphs. This list was generated using
SageMath’s nauty module and then filtering for unsatisfiable graphs.
1 (1)²
2 (1), (2), (1,2)
3 (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)
4 (1,2), (1,3), (2,3), (1,2,3), (1,2,4), (1,2,5), (3,4,5)
5 (1,2), (1,3), (1,4), (2,3), (2,4), (1,2,5), (3,4,5)
6 (1,2), (1,3), (1,4), (2,3), (2,4), (1,3,4)
7 (1,2), (1,3), (1,4), (2,3), (2,4), (1,3,5), (2,4,5)
8 (1,2)², (1,4), (1,2,4)²
9 (1,2), (1,3), (1,4), (2,3), (1,2,4), (1,3,4)

10 (1,2), (1,3), (1,4), (2,3), (1,2,4), (1,4,5), (2,3,5)
11 (1,2), (1,3), (1,4), (2,3), (1,2,4), (1,3,5), (2,4,5)
12 (1,2), (1,3), (1,4), (2,3), (1,2,4), (2,3,4)
13 (1,2), (1,3), (1,4), (2,3), (1,2,4), (1,2,5), (3,4,5)
14 (1,2), (1,3), (1,4), (2,3), (1,2,5), (1,4,5), (3,4,5)
15 (1,2), (1,3), (1,4), (2,3), (1,4,5), (2,3,5), (2,4,5)
16 (1,2), (1,3), (1,4), (2,3), (1,4,5), (2,4,5), (3,4,5)
17 (1)², (1,3)
18 (1,2)², (1,4)², (1,2,4)
19 (1,2), (1,3), (1,4)², (2,3), (2,3,4)
20 (1,2)², (1,3)², (2,3)
21 (1,2)², (1,4), (1,5), (1,4,5), (2,4,5)
22 (1,2), (1,3), (1,4), (1,5), (2,3), (2,4,5), (3,4,5)
23 (1,2), (1,3)², (2,4), (1,2,4), (2,3,4)
24 (1,2), (1,3), (1,5), (2,4), (3,5), (2,3,4), (2,4,5)

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 29

25 (1,2), (1,3), (2,4), (1,2,3), (1,2,4), (1,3,4)
26 (1), (1,3), (1,5), (1,3,5), (3,4,5)
27 (1,2), (1,3), (1,5), (2,4), (1,2,4), (2,3,5), (3,4,5)
28 (1), (1,3)², (1,3,4)
29 (1,2), (1,3), (2,4), (1,2,4), (2,3,4), (1,3,4)
30 (1,2)², (1,3), (2,4), (1,3,4), (2,3,4)
31 (1,2), (1,3), (2,4), (3,4), (1,2,3), (1,2,4)
32 (1,2), (1,3), (2,4), (3,4), (1,2,5), (1,3,4), (3,4,5)
33 (1,2), (1,3), (2,4), (3,4), (1,2,4), (1,4,5), (2,3,5)
34 (1), (1,3)², (3,4)
35 (1,2), (1,3), (1,5), (2,4), (3,4), (1,2,5), (3,4,5)
36 (1,2), (1,3), (2,4), (1,2,3), (1,2,4), (1,3,5), (2,4,5)
37 (1,2), (1,3), (2,4), (1,2,3), (1,2,4), (1,4,5), (2,3,5)
38 (1,2), (1,3), (2,4), (1,2,3), (1,2,4), (1,2,5), (3,4,5)
39 (1,2), (1,3), (2,4), (1,2,3), (1,2,5), (2,4,5), (3,4,5)
40 (1,2), (1,3), (2,4), (1,2,3), (1,4,5), (2,3,4), (2,3,5)
41 (1,2), (1,3), (2,3), (2,4), (3,5), (4,5), (1,4,5)
42 (1,2), (1,3), (2,4), (3,5), (4,5), (1,2,3), (1,4,5)
43 (2)², (3,5)
44 (1,2), (1,3), (2,4), (3,5), (4,5), (1,2,5), (1,3,4)
45 (1,2), (1,3), (2,4), (4,5), (1,2,3), (1,3,5), (1,4,5)
46 (1,2), (1,3), (2,4), (4,5), (1,2,3), (1,3,5), (3,4,5)
47 (2)², (2,3,5)
48 (1,2), (1,3), (2,4), (4,5), (1,2,3), (1,4,5), (2,3,5)
49 (1,2), (1,3), (2,4), (4,5), (1,2,3), (1,4,5), (3,4,5)
50 (2), (1,2), (1,3), (1,2,3), (1,3,5)
51 (1,2), (1,3), (2,4), (1,2,3), (1,3,5), (1,4,5), (2,4,5)
52 (1,2), (1,3), (2,4), (1,2,3), (1,4,5), (2,3,5), (2,4,5)
53 (1,2), (1,3), (2,4), (1,3,5), (1,4,5), (2,3,5), (2,4,5)
54 (1,2), (1,3), (2,4), (1,2,3), (1,3,5), (2,4,5), (3,4,5)
55 (1,2), (1,3), (4,5), (1,2,4), (1,2,5), (1,3,4), (1,3,5)
56 (1,2), (1,3), (4,5), (1,2,4), (1,3,5), (2,4,5), (3,4,5)
57 (1,2), (1,3), (4,5), (1,2,4), (1,3,4), (1,3,5), (2,4,5)
58 (1,2), (1,3), (4,5), (1,2,4), (1,3,4), (2,3,5), (2,4,5)
59 (1,2), (1,3), (4,5), (1,2,4), (1,3,4), (2,4,5), (3,4,5)
60 (1,2), (1,3), (2,4)², (1,3,4), (2,3,4)
61 (1,2), (1,3), (2,4), (4,5), (1,2,5), (1,3,4), (3,4,5)
62 (1,2), (1,3), (2,4), (4,5), (1,2,5), (1,3,4), (1,3,5)
63 (1,2), (1,3), (2,4), (4,5), (1,3,4), (2,3,5), (3,4,5)
64 (1,2), (1,3), (2,4), (4,5), (1,2,5), (1,3,5), (2,3,4)
65 (1,2), (1,3), (2,4), (4,5), (1,3,5), (2,3,4), (3,4,5)
66 (1,2), (1,3), (2,4), (4,5), (1,2,4), (1,3,5), (2,3,5)
67 (1,2), (1,3), (2,4), (1,2,3), (1,4,5), (2,4,5), (3,4,5)
68 (1,2), (1,3), (2,4), (1,2,3), (1,3,5), (2,3,4), (2,4,5)
69 (1,2), (1,3), (2,4), (1,2,4), (1,2,5), (1,3,4), (3,4,5)

Appendix D. Implementation of local graph rewriting

Below we include the docstring of the function, informing us what exactly the function does, fol-
lowed by its implementation as a code-snippet. The implementation uses other functions defined in
the package like operations.graph_or, compute_all_two_partitions_of_link, and mhgraph.rest.
We will not detail each of these subsidiary functions here. We leave it instead to the interested reader
to look at graphsat’s source code for more details.

(python3.9) (graph_rewrite.py) «local-rewrite-docstring»
"""Locally rewrite at ``vertex`` assuming that the graph is only partially known.

This function only affects edges incident on ``vertex``, assuming that ``mhg`` only represents a part of the
full graph. The result is a dictionary of Cnfs grouped by their MHGraphs.
"""

30 VAIBHAV KARVE AND ANIL N. HIRANI

(python3.9) (graph_rewrite.py) «local_rewrite»
def local_rewrite(mhg: mhgraph.MHGraph, vertex: mhgraph.Vertex) -> dict[mhgraph.MHGraph, set[cnf.Cnf]]:

<<local-rewrite-docstring>> # Add function docstring.
rest: mhgraph.MHGraph = mhgraph.rest(mhg, vertex) # Compute the rest of mhg at vertex.

part = list[mhgraph.MHGraph] # The type of a part of link(mhg, vertex).
two_partitions: Iterator[tuple[part, part]] # Generate all 2-partitions of link(mhg, vertex).
two_partitions = compute_all_two_partitions_of_link(mhg, vertex)

resultant_cnfs: set[cnf.Cnf] = set() # Initialize resultant Cnf set.

for h1, h2 in two_partitions: # Loop over all 2-partitions of the link.
h1_or_h2: set[cnf.Cnf] = op.graph_or(h1, h2) # Disjunction of the parts.
h12_and_rest: set[cnf.Cnf] = op.graph_and(h1_or_h2, rest) # Conjunction with the rest.
resultant_cnfs |= h12_and_rest # Add result to set of resultant Cnfs.

return graph_collapse.create_grouping(resultant_cnfs) # Group Cnfs by the Graphs to which they belong.

Appendix E. Implementation of graph disjunction

We present an implementation of graph disjunction as a Python function. This function can
be found under the name graph_or in the operations.py module in our graphsat package. It
computes the pairwise disjunction of the Cartesian product of two sets of Cnfs. Since the disjunction
of two Cnfs is not a Cnf, we can bring it back into normal form using the function cnf_or_cnf
which is outlined below as a helper function and is part of the prop.py module.

(python3.9) (operations.py) «graph_or»
def graph_or(graph1: Union[MHGraph, set[cnf.Cnf]], graph2: Union[MHGraph, set[cnf.Cnf]]) -> set[cnf.Cnf]:

"""Disjunction of the Cartesian product of Cnfs."""
if not isinstance(graph1, set): # Convert graph1 to its underlying set of Cnfs, if needed.

graph1 = set(sat.cnfs_from_mhgraph(mhgraph(graph1)))
if not isinstance(graph2, set): # Convert graph2 to its underlying set of Cnfs, if needed.

graph2 = set(sat.cnfs_from_mhgraph(mhgraph(graph2)))

product = it.product(graph1, graph2) # Cartesian product of Cnfs.
disjunction = it.starmap(prop.cnf_or_cnf, product) # Use distributivity to bring back into normal form.
disjunction_reduced = map(cnf.tautologically_reduce_cnf, disjunction) # Simplify Cnf is possible.
return set(disjunction_reduced) # Return a set of Cnfs.

(python3.9) (prop.py) «cnf_or_cnf»
def clause_or_clause(clause1: Clause, clause2: Clause) -> Clause: # Union of clause1 with clause2.

return clause(clause1 | clause2)

def cnf_or_clause(cnf1: Cnf, clause_: Clause) -> Cnf: # Distribute each clause across the Cnf.
return cnf([clause_or_clause(clause1, clause_) for clause1 in cnf1])

def cnf_or_cnf(cnf1: Cnf, cnf2: Cnf) -> Cnf: # Distribute each clasuse accross and then fold the result.
return ft.reduce(cnf_and_cnf, [cnf_or_clause(cnf1, clause) for clause in cnf2])

References

[1] Cervone, D. P. Vertex-minimal simplicial immersions of the Klein bottle in three space. Geometriae Dedicata
50, 2 (Apr. 1994), 117–141. doi:10.1007/BF01265307.

[2] Karve, V., and Hirani, A. N. The complete set of minimal simple graphs that support unsatisfiable 2-cnfs.
Discrete Applied Mathematics 283 (2020), 123–132. doi:10.1016/j.dam.2019.12.017.

[3] Karve, V., and Hirani, A. N. Github: vaibhavkarve/graphsat, Apr. 2021. doi:10.5281/zenodo.4662169.
[4] McKay, B. D., and Piperno, A. Practical graph isomorphism, ii. Journal of Symbolic Computation 60 (2014),

94–112. doi:https://doi.org/10.1016/j.jsc.2013.09.003.
[5] Möbius, A. F. Zur theorie der polyëder und der elementarverwandtschaft. Gesammelte werke 2 (1886), 513–560.
[6] Robertson, N., and Seymour, P. Graph minors XX. Wagner’s conjecture. Journal of Combinatorial Theory,

Series B 92, 2 (2004), 325 – 357. Special Issue Dedicated to Professor W.T. Tutte.

http://dx.doi.org/10.1007/BF01265307
http://dx.doi.org/10.1016/j.dam.2019.12.017
http://dx.doi.org/10.5281/zenodo.4662169
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2013.09.003

GRAPHSAT – A DECISION PROBLEM CONNECTING SATISFIABILITY AND GRAPH THEORY 31

Email address: vkarve2@illinois.edu

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street,
Urbana, IL 61801

Email address: hirani@illinois.edu

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street,
Urbana, IL 61801

	1. Introduction
	2. Definitions and notation
	2.1. Type theory annotations
	2.2. Boolean formulae
	2.3. Assignments
	2.4. Satisfiability of Cnfs
	2.5. Graphs and Satisfiability

	3. Local rewriting in graphs
	3.1. Assignments on graphs
	3.2. Parts of a graph
	3.3. The local rewriting theorem

	4. Graph reduction rules
	4.1. Deleting leaf vertices
	4.2. Smoothing edges
	4.3. Tucking edges
	4.4. Opening a triple-intersection vertex

	5. Satisfiability of mixed hypergraphs
	5.1. Minimality of unsatisfiable hypergraphs
	5.2. Computational logistics

	6. Satisfiability of triangulations
	6.1. Thickening of graph edges
	6.2. Tetrahedron and prisms
	6.3. Triangulation of a Möbius strip
	6.4. Minimal triangulation of the real projective plane
	6.5. Minimal triangulation of a Klein bottle
	6.6. Minimal triangulation of a torus

	7. Satisfiability of infinite graphs
	7.1. Infinitely many disconnected loops
	7.2. Uniform infinite trees
	7.3. Infinite ray graph
	7.4. Bi-infinite strip
	7.5. Plane tiling with missing alternate tiles
	7.6. Compactness theorem and infinite GraphSAT

	8. Conclusion and future directions
	8.1. Future directions

	Appendix A. Operator and notation summary
	Appendix B. Standard graph disjunctions
	Appendix C. List of known unsatisfiable graphs
	Appendix D. Implementation of local graph rewriting
	Appendix E. Implementation of graph disjunction
	References

