Logic Comprehensive Exam (Math 570), January 27, 2021

Do all four problems. Explain your answers except when asked to “indicate” something. The four problems have equal weight. Throughout: \(m, n \) range over \(\mathbb{N} := \{0, 1, 2, 3, \ldots\} \); \(L \) is a language; given a set \(\Sigma \) of \(L \)-sentences, \(\text{Th}(\Sigma) \) is the set of \(L \)-sentences \(\sigma \) such that \(\Sigma \vdash \sigma \); for an \(L \)-structure \(A \), \(\text{Th}(A) \) is the set of \(L \)-sentences true in \(A \); computable has the same meaning as recursive, and computably generated the same as recursively enumerable (for those used to other terminology).

1. Let \(L \) have just the binary relation symbol \(<\). Let \(\sigma \) be the sentence \(\forall x \exists y (x < y) \).
 (i) Indicate a finite set \(\Sigma \) of \(L \)-sentences whose models are exactly the (nonempty) totally ordered sets \((A; <)\). Here “ordered” is taken in the strict sense where \(a < b \) implies \(a \neq b \).
 (ii) Show that \(\sigma \) is not \(\Sigma \)-equivalent to any existential \(L \)-sentence.
 (iii) Show that \(\sigma \) is not \(\Sigma \)-equivalent to any universal \(L \)-sentence.

2. Let \(L \) have just the unary relation symbol \(P \).
 (i) Indicate a set \(\Sigma \) of \(L \)-sentences whose models are exactly the \(L \)-structures \(A = (A; P) \) such that \(P \subseteq A \) is infinite.
 (ii) Determine the countable models of \(\Sigma \) up to isomorphism.
 (iii) Show that \(\Sigma \) is not complete.
 (iv) Indicate a family \((\Sigma_i)_{i \in I} \) where each \(\Sigma_i \supseteq \Sigma \) is a complete set of \(L \)-sentences and every model of \(\Sigma \) is a model of \(\Sigma_i \) for exactly one \(i \in I \).
 (v) Show that \(\text{Th}(\Sigma) \) is decidable. (You can argue informally using “decidable” intuitively.)

3. Let \(\mathcal{N} = (\mathbb{N}; <, 0, S, +, \cdot) \) be the standard model of arithmetic. Let PA be the usual set of axioms of (first-order) Peano Arithmetic; recall that PA includes an induction scheme.
 (i) \(\mathcal{A} \equiv \mathcal{N} \) for all \(\mathcal{A} \models \text{PA} \). True or false?
 (ii) Is there a model \(\mathcal{A} \) of PA such that \(\text{Th}(\mathcal{A}) \) is decidable?
 (iii) Show that there is a countable model \(\mathcal{A} = (A; <, \ldots) \) of PA with an element \(a \in A \) such that \(n < a \) and \(a \in nA \) for all \(n \); here \(\mathbb{N} \) is identified with its image in \(A \) via the embedding \(n \mapsto (S^n 0)^A : \mathcal{N} \to \mathcal{A} \) and \(nA := \{n \cdot a : a \in A\} \).
 (iv) Let \(\mathcal{A} \) be as in (iii). Show that the subset \(\mathbb{N} \) of \(A \) is not definable in \(\mathcal{A} \).

4. Let \(f, g : \mathbb{N} \to \mathbb{N} \) be computable such that \(f \) is injective, \(f(\mathbb{N}) \) is computable, and \(f(n) \leq g(n) \) for all \(n \).
 (i) Show that \(g(\mathbb{N}) \) is computable. (You can argue informally using “computable” intuitively.)

Let \(A, B \subseteq \mathbb{N} \). (Continued on other side.)
(ii) Show that if A, B are computably generated, then there are disjoint computably generated sets $A^* \subseteq A$ and $B^* \subseteq B$ such that $A^* \cup B^* = A \cup B$.

(iii) Suppose $A \cap B = \emptyset$ and the complements of A and B are computably generated. Use (ii) to show there is a computable set $S \subseteq \mathbb{N}$ such that $A \subseteq S$ and $S \cap B = \emptyset$.