
ON THE PILA-WILKIE THEOREM

NEER BHARDWAJ AND LOU VAN DEN DRIES

Abstract. In this expository paper we give an account of the Pila-Wilkie
counting theorem and some of its extensions and generalizations. We use

semialgebraic cell decomposition to simplify part of the original proof. We

include a full treatment of a result due to Pila and Bombieri, and of a variant
of the Yomdin-Gromov theorem that are used in this proof.

1. Introduction and some notations

In these notes we prove the Pila-Wilkie theorem following the original paper [6],
but exploiting cell decomposition more thoroughly to simplify the deduction from
its main ingredients. Apart from assuming some knowledge of o-minimality, we
make this self-contained by including proofs of these ingredients.

We also obtain two generalizations due to Pila [5], one where instead of rational
points we count points with coordinates in a Q-linear subspace of R with a finite
bound on its dimension, and one where instead we count points with coordinates
that are algebraic of at most a given degree over Q. The general approach is as in
[5], but the technical details seem to us a bit simpler.

We thank Chieu Minh Tran for discussions on this topic.

Throughout, d, e, k, l,m, n ∈ N, and ε, c,K ∈ R>. For α = (α1, . . . , αm) ∈ Nm we
set |α| := α1 + · · ·+αm, and given a field k (often k = R) we set xα := xα1

1 · · ·xαmm
for the usual coordinate functions x1, . . . , xm on km, and likewise aα := aα1

1 · · · aαmm
for any point a = (a1, . . . , am) ∈ km. Let U ⊆ Rm be open. For a function
f : U → R of class Ck and α ∈ Nm, |α| 6 k, we let

f (α) :=
∂|α|

∂xα
f

denote the corresponding partial derivative of order α. We extend the above to
Ck-maps f = (f1, . . . , fn) : U → Rn, where

f (α) := (f
(α)
1 , . . . , f (α)

n ) : U → Rn

for α as before. This includes the case m = 0, where R0 has just one point and
any map f : U → Rn is of class Ck for all k, with f (α) = f for the unique α ∈ N0.
For a1, . . . , an ∈ R> the number max{a1, . . . , an} ∈ R> equals 0 by convention if
n = 0. For a = (a1, . . . , an) ∈ Rn we set |a| := max{|a1|, . . . , |an|} ∈ R>; this
conflicts with our notation |α| for α ∈ Nn, but in practice no confusion will arise.
We also use these notational conventions when instead of R we have any o-minimal
field with U and f definable in it, where an o-minimal field is by convention an
o-minimal expansion of an ordered (necessarily real closed) field.
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The Pila-Wilkie theorem and two ingredients of the proof. First some
notation needed to state the theorem. We define the multiplicative height function
H : Q → R by H(ab ) := max(|a|, |b|) ∈ N>1 for coprime a, b ∈ Z, b 6= 0. Thus
H(0) = H(1) = H(−1) = 1, and for q ∈ Q we have H(q) > 2 if q /∈ {0, 1,−1},
H(q) = H(−q), and H(q−1) = H(q) for q 6= 0. For a = (a1, ..., an) ∈ Qn,

H(a) := max{H(a1), . . . ,H(an)} ∈ N.

Let X ⊆ Rn. We set X(Q) = X ∩ Qn. Throughout T ranges over real numbers
> 1, and we set X(Q, T ) := {a ∈ X(Q) : H(a) 6 T} be the (finite) set of rational
points of X of height 6 T , and set N(X,T ) := #X(Q, T ) ∈ N. The algebraic part
of X, denoted by Xalg, is the union of the connected infinite semialgebraic subsets
of X. So for n > 1, the interior of X is part of Xalg.

Example. Set X := {(x, y, z) ∈ R3 : 1 < x, y < 2, z = xy}, so the set X is
definable in Rexp. For rational q ∈ (1, 2), we have a semialgebraic curve

Xq := {x, q, z) : z = xq} ⊆ X.

One can show that Xalg is the union of those Xq.

We also set

Xtr := X \Xalg (the transcendental part of X).

We can now state the Pila-Wilkie theorem, also called the Counting Theorem:

Theorem 1.1. Let X ⊆ Rn with n > 1 be definable in some o-minimal expansion
of the real field. Then for all ε there is a c such that for all T ,

N(Xtr, T ) 6 cT ε.

Roughly speaking, it says there are few rational points on the transcendental part
of a set definable in an o-minimal expansion of the real field: the number of such
points grows slower than any power T ε with T bounding their height. To apply
the counting theorem one needs to describe Xalg in some useful way. This typically
involves Ax-Schanuel type transcendence results.

Note that Xtr(Q) = ∅ in the example above, so the theorem is trivial for this X.
We shall include a refinement, Theorem 2.5, which is nontrivial for this X.

The proof of Theorem 1.1 depends on two intermediate results. The first of these
has nothing to do with o-minimality. To state it we define for k, n > 1 and X ⊆ Rn
a strong k-parametrization of X to be a Ck-map f : (0, 1)m → Rn, m < n, with
image X, such that |f (α)(a)| 6 1 for all α ∈ Nm with |α| 6 k and all a ∈ (0, 1)m.
We also define a hypersurface in Rn of degree 6 e to be the zeroset in Rn of a
nonzero polynomial in x = (x1, . . . , xn) over R of (total) degree 6 e.

Theorem 1.2. Let n > 1 be given. Then for any e > 1 there are k = k(n, e) > 1,
ε = ε(n, e), and c = c(n, e), such that if X ⊆ Rn has a strong k-parametrization,
then for all T at most cT ε many hypersurfaces in Rn of degree 6 e are enough to
cover X(Q, T ), with ε(n, e)→ 0 as e→∞.

Let now R be any o-minimal field, and let X ⊆ Rn be definable, n > 1. Then we
introduce the notion of a definable strong k-parametrization of X as before, with R
and the interval (0, 1)R in R instead of R and the real interval (0, 1), and where f is
definable. The second intermediate result in the proof of the Pila-Wilkie theorem is
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about decomposing a definable set in an o-minimal field into finitely many definable
subsets that admit such a parametrization:

Theorem 1.3. Given an o-minimal field R, every definable set X ⊆ [−1, 1]nR with
empty interior and n > 1 is for every k > 1 a finite union of definable subsets, each
having a definable strong k-parametrization.

We use Theorem 1.3 not just when R is an o-minimal expansion R̃ of the real
field, even though Theorem 1.1 is only about definable sets in such expansions.
This is because by model theory we obtain from Theorem 1.3 a uniform version

of the corresponding result for any o-minimal expansion R̃ of the real field. Here
‘uniform’ means that if instead of a single definable X ⊆ Rn we have a definable
family (Xb)b∈B of such sets, then the decomposition of Xb into definable subsets
and their k-parametrizations can also be taken to depend definably on b ∈ B.

2. Proof of the Counting Theorem from the two ingredients

Throughout this section we assume n > 1. We begin by stating some elementary
facts about Xalg and Xtr for X ⊆ Rn. The first is obvious:

Lemma 2.1. If X = X1 ∪ · · · ∪Xm, then Xalg ⊇ Xalg
1 ∪ · · · ∪Xalg

m , and thus

Xtr ⊆ Xtr
1 ∪ · · · ∪Xtr

m.

Note also that if X is open in Rn, then Xtr = ∅.

Lemma 2.2. Suppose S ⊆ Rn is semialgebraic, f : S → Rm is semialgebraic and
injective, and f maps the set X ⊆ S homeomorphically onto Y = f(X) ⊆ Rm. Then
f(Xalg) = Y alg and thus f(Xtr) = Y tr. (We allow m = 0 for later inductions.)

Proof. It is clear that f(Xalg) ⊆ Y alg. Also, for any connected infinite semialgebraic
set C ⊆ Y , the set f−1(C) ⊆ S is semialgebraic (since C and f are), contained
in X (since f is injective), hence connected and infinite, and thus f−1(C) ⊆ Xalg.
This shows f−1(Y alg) ⊆ Xalg, and thus f(Xalg) = Y alg. �

In order to apply Theorem 1.3 we need to reduce to the case of subsets of [−1, 1]n.
This is done as follows. For X ⊆ Rn and I ⊆ {1, . . . , n}, set

XI := {a ∈ X : |ai| > 1 for all i ∈ I, |ai| 6 1 for all i /∈ I}

and define the semialgebraic map fI : RnI → Rn by fI(a) = b where bi := a−1
i for

i ∈ I and bi := ai for i /∈ I. Thus fI maps RnI homeomorphically onto its image,
a subset of [−1, 1]n. If I = ∅, then fI is the inclusion map RnI = [−1, 1]n → Rn.
Note that for a ∈ Qn we have fI(a) ∈ Qn and H(a) = H

(
fI(a)

)
. Moreover, X

is the disjoint union of the sets XI , and for YI = fI(XI) we have YI ⊆ [−1, 1]n,
Y tr
I = fI(X

tr
I ) by Lemma 2.2, so N(Y tr

I , T ) = N(Xtr
I , T ) for all T .

The sketch below actually proves the Counting Theorem, modulo a uniformity
assumption that arises at the end of the sketch. This motivates a stronger “definable
family” version of the theorem, which we then prove as in the sketch. In the rest of

this section we fix an o-minimal expansion R̃ of the real field, and definable is with

respect to R̃, and so are cells.
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Sketch of the proof of Theorem 1.1 from Theorems 1.2 and 1.3. Let
X ⊆ Rn be definable. We need to show that there are ‘few’ rational points on
X outside Xalg. We proceed by induction on n. By Lemma 2.1 and the remark
following it we can remove the interior of X in Rn from X and arrange that X has
empty interior. As indicated just before this sketch we also arrange X ⊆ [−1, 1]n.

Let ε be given, and take e > 1 so large that ε(n, e) 6 ε/2 in Theorem 1.2, and

take k = k(n, e). By Theorem 1.3 for R̃, X = X1 ∪ · · · ∪XM , M ∈ N, where each
Xi ⊆ Rn is definable and admits a strong k-parametrization.

By Theorem 1.2, X(Q, T ) ⊆
⋃M
i=1

⋃J
j=1Hij , where the Hij are hypersurfaces

in Rn of degree 6 e, and J ∈ N, J 6 cT ε/2, c = c(n, e) as in that theorem. If
a ∈ Xtr(Q, T ) and a ∈ Hij , then clearly a ∈ (X ∩Hij)

tr. Thus

Xtr(Q, T ) ⊆
M⋃
i=1

J⋃
j=1

(X ∩Hij)
tr(Q, T ).

Let H be any hypersurface in Rn of degree 6 e. We aim for an upper bound on
N
(
(X ∩H)tr, T

)
of the form c1T

ε/2 with c1 ∈ R> independent of H and T . (If we
achieve this, then applying this to the hypersurfaces Hij we obtain

N(Xtr, T ) 6 MJc1T
ε/2 6 M · cT ε/2 · c1T ε/2 = Mcc1 · T ε,

and we are done.) Take semialgebraic cells C1, . . . , CL in Rn, L ∈ N, such that

H = C1 ∪ · · · ∪ CL.
Suppose C = Cl is one of those cells. Then by [2, (III, 2.7)] we have a semialgebraic
homeomorphism p = pC : C → p(C) = p(Cl) onto an open cell p(Cl) in Rnl with
nl < n, and so p maps X ∩ Cl homeomorphically onto its image Yl ⊆ p(Cl) ⊆ Rnl .
Now p is given by omitting n − nl of the coordinates, so for a ∈ Cl(Q) we have
p(a) ∈ Qnl and H

(
p(a)

)
6 H(a). The hypersurfaces of degree 6 e in Rn belong

to a single semialgebraic family, hence by [2, (III, 3.6)] we can (and do) take here
L 6 L(e, n), with L(e, n) ∈ N>1 depending only on e, n. By Lemma 2.1,

(X ∩H)tr ⊆ (X ∩ C1)tr ∪ · · · ∪ (X ∩ CL)tr.

Since the nl < n we can (and do) assume inductively that for all T ,

N(Y tr
l , T ) 6 BlT

ε/2, l = 1, . . . , L

with Bl ∈ R> independent of T . Hence for all T ,

N
(
(X ∩ Cl)tr

)
, T ) 6 BlT

ε/2, l = 1, . . . , L

by Lemma 2.2 applied to the maps p = pCl , and thus

N
(
(X ∩H)tr, T

)
6 (B1 + · · ·+BL)T ε/2.

Assume we can take B1, . . . , BL 6 B with B ∈ R> depending only on X, ε, not on
H,Y1, . . . , YL. Then c1 := L(e, n)B is a positive real number as aimed for.

The above sketch is a proof, modulo the assumption at the end. The hypersurfaces
H in the sketch belong fortunately to a single semialgebraic family, a fact we already
used, and so the sets Yl as H varies can be taken to belong to a single definable
family, depending on X. The inductive hypothesis should accordingly include this
uniformity, and so the full proof should be carried out not just for one set X,
but uniformly for all sets from a definable family, with constants depending only
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on the family. This is why we need Theorem 1.3 not just for R̃ but also for its

elementary extensions, though in the above sketch we only used it for R̃. (As to
the M introduced at the beginning of the sketch, Theorem 1.3 also provides an M
that works for all members of the family.) Below we carry out the details.

Remarks on definable families. Let E ⊆ Rm and X ⊆ E × Rn. For s ∈ E, set

X(s) := {a ∈ Rn : (s, a) ∈ X} (a section of X)

We consider E,X as describing the family
(
X(s)

)
s∈E of sections X(s) ⊆ Rn; these

sets X(s) are called the members of the family. If E and X are definable, we call
this a definable family, and then its members are definable subsets of Rn. (In case

R̃ is the ordered field of real numbers, we also write semialgebraic family instead
of definable family.) We often divide the family given by E,X into subfamilies
given by a covering E = E1 ∪ · · · ∪ EN , where Eν is typically the set of s ∈ E
for which X(s) satisfies a certain condition eν . Then X = X1 ∪ · · · ∪ XN with
Xν := X ∩ (Eν × Rn), so that Xν(s) satisfies eν for all s ∈ Eν .

For the next lemma, a routine consequence of [2, III, Section 3], we recall from
[2, III, Section 2] that for i = (i1, . . . , in) ∈ {0, 1}n we have a projection map
pi : Rn → Rd, d := i1 + · · ·+ in, that maps every i-cell homeomorphically onto its
image, an open cell in Rd.

Lemma 2.3. Let e > 1 and set D :=
(
e+n
n

)
, the dimension of the R-linear space of

polynomials over R in n variables and of degree 6 e. Then there are L ∈ N>1 and
semialgebraic sets H, C1, . . . , CL ⊆ F × Rn, F := RD \ {0}, such that

{H(t) : t ∈ F} = set of hypersurfaces in Rn of degree 6 e,

H(t) = C1(t) ∪ · · · ∪ CL(t) for all t ∈ F , and for each l ∈ {1, . . . , L} there is an
i = (i1, . . . , in) ∈ {0, 1}n, i 6= (1, . . . , 1), with the property that every Cl(t) with
t ∈ F is a semialgebraic i-cell in Rn or empty.

Two family versions of the counting theorem. In this subsection we assume
that E ⊆ Rm and X ⊆ E × Rn are definable.

Theorem 2.4. Let any ε be given. Then there is a constant c = c(X, ε) such that
for all s ∈ E and all T we have N(X(s)tr, T ) 6 cT ε.

Proof. We proceed by induction on n. As in the sketch we reduce to the case
where X(s) is for every s ∈ E a subset of [−1, 1]n with empty interior. Take
e > 1 so large that ε(n, e) 6 ε/2 in Theorem 1.2, and set k = k(n, e). So for
every Z ⊆ Rn with a strong k-parameterization we can cover Z(Q, T ) with at most
cT ε/2 hypersurfaces of degree 6 e where c = c(n, e) is as in Theorem 1.2. From
Theorem 1.3 we obtain definable sets X1, . . . , XM ⊆ E ×Rn, M ∈ N, such that for
all s ∈ E, X(s) = X1(s) ∪ · · · ∪ XM (s) and each Xi(s) is empty or has a strong
k-parametrization. Let s ∈ E, and let H be a hypersurface of degree 6 e. As in
the sketch we see that by our choice of k, e it is enough to show:

N((X(s) ∩H)tr, T ) 6 c1T
ε/2, for all T,

where c1 ∈ R> depends only on X, ε, not on s,H, T . Below we provide such c1.
With the present values of e and n, set D :=

(
e+n
n

)
, F := RD \ {0}, and let

H, C1, . . . , CL ⊆ F ×Rn be as in Lemma 2.3. For l = 1, . . . , L, take il = (il1, . . . , i
l
n)
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in {0, 1}n, not equal to (1, . . . , 1), such that for all t ∈ F the subset Cl(t) of Rn is

a semialgebraic il-cell or empty, so

pil : Rn → Rnl , nl := il1 + · · ·+ iln < n,

maps Cl(t) homeomorphically onto its image. Then we have for l = 1, . . . , L a
definable set Yl ⊆ (E × F )× Rnl such that for all (s, t) ∈ E × F ,

Yl(s, t) = pil
(
X(s) ∩ Cl(t)

)
.

Since all nl < n we can assume inductively that for all (s, t) ∈ E × F and all T ,

N(Yl(s, t)
tr, T ) 6 BlT

ε/2, l = 1, . . . , L

with Bl = Bl(Yl, ε) ∈ R> independent of s, t, T . Since H = H(t) for some t ∈ F ,

N
(
(X(s) ∩H)tr, T

)
6 (B1 + · · ·+BL)T ε/2,

as in the sketch. Thus c1 := B1 + · · ·+BL is as promised. �

Next a variant of Theorem 2.4 where we remove from the sets X(s) only a definable
part V (s) of X(s)alg instead of all of it. The example preceding the statement of
Theorem 1.1 shows that this variant is strictly stronger than Theorem 2.4.

Theorem 2.5. Let any ε be given. Then there is a definable set V = V (X, ε) ⊆ X
and a constant c = c(X, ε) such that for all s ∈ E and all T ,

V (s) ⊆ X(s)alg and N
(
X(s) \ V (s), T

)
6 cT ε.

Proof. By induction on n. We follow closely the proof of Theorem 2.4. Let V0 ⊆ X
be given by V0(s) = interior of X(s) in Rn for s ∈ E. This definable set V0 will be
part of a V as required. Replacing X by X \ V0 we arrange that X(s) has empty
interior for all s ∈ E. We arrange in addition that X(s) ⊆ [−1, 1]n for all s ∈ E.
Now take e and k = k(n, e) as in the proof of Theorem 2.4. It will be enough to
find a definable V ⊆ X and a constant c1 ∈ R> such that for all s ∈ E, every
hypersurface H of degree 6 e in Rn, and all T we have

V (s) ⊆ X(s)alg, N
(
(X(s) ∩H) \ V (s), T

)
6 c1T

ε/2.

We take the semialgebraic sets H, C1, . . . , CL ⊆ F × Rn and the definable sets
Yl ⊆ E × F × Rnl for l = 1, . . . , L as in the proof of Theorem 2.4. For such l we
have nl < n, so we can assume inductively that we have a definable set Wl ⊆ Yl
and a number Bl = Bl(Yl, ε) ∈ R> such that for all s ∈ E, t ∈ F , and T we have

Wl(s, t) ⊆ Yl(s, t)
alg and N(Yl(s, t) \Wl(s, t), T ) 6 BlT

ε/2.

It is now easy to check that the definable set V ⊆ X such that for all s ∈ E,

V (s) =

L⋃
l=1

⋃
t∈F
Cl(t) ∩ p−1

il

(
Wl(s, t)

)
has the desired property. �

In the next sections we establish the results used in the proofs above, namely
Theorems 1.2 and 1.3. In Section 8 we strengthen and extend Theorem 2.5 in
several ways without changing the basic inductive set-up of its proof.
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3. Proof of Theorem 1.2

We begin with introducing a key determinant. Let k be a field and set

D(n, e) :=

(
e+ n

n

)
= #{α ∈ Nn : |α| 6 e} ∈ N>1,

the dimension of the k-linear space of n-variable polynomials over k of (total) degree

at most e. Thus D(n, 0) = 1, D(n, e) = en

n!

(
1 + o(1)

)
as e→∞, and if n > 1, then

D(n, e) is strictly increasing as a function of e.
For now we fix n and e, set D := D(n, e) and let α range over Nn. By a

hypersurface in kn of degree 6 e we mean the set of zeros in kn of a nonzero
n-variable polynomial of degree 6 e with coefficients in k.

Lemma 3.1. Let a1, . . . , aD ∈ kn. Then a1, . . . , aD lie on a common hypersurface
in kn of degree at most e if and only if det(aαi )|α|6e,i=1,...,D = 0.

Proof. Let f =
∑
|α|6e

cαx
α be a nonzero polynomial in x = (x1, . . . , xn) of degree at

most e with coefficients cα ∈ k such that f(a1) = · · · = f(aD) = 0. Then∑
|α|6e

cα
(
aα1 , . . . , a

α
D

)
= 0 in kD,

so the D vectors (aα1 , . . . , a
α
D) (|α| 6 e) in the k-linear space kD are linearly depen-

dent, which gives the desired conclusion.
Conversely, suppose det(aαi )|α|6e,i=1,...,D = 0. Then we can reverse the argument

above: the D vectors above are linearly dependent, and this provides coefficients
cα of a polynomial f as required. �

Next we introduce some numbers related to D = D(n, e):

E(n, e) :=

(
e+ n− 1

n− 1

)
= #{α : |α| = e},

the dimension of the k-linear space of homogeneous n-variable polynomials of degree
e over k. (Here

(−1
−1

)
:= 1 and

(
k
−1

)
:= 0.) So D(n, e) =

∑e
i=0E(n, i). Next, we set

V (n, e) :=
∑e
i=0 iE(n, i). Now for i > 1,

iE(n, i) = i

(
i+ n− 1

n− 1

)
= n

(
i+ n− 1

n

)
= nE(n+ 1, i− 1), so

V (n, e) = n

e∑
i=1

E(n+ 1, i− 1) = nD(n+ 1, e− 1) for e > 1, V (n, 0) = 0,

and thus for fixed n we have V (n, e) = nen+1

(n+1)!

(
1 + o(1)

)
as e→∞.

Let e,m, n > 1 below and define b = b(m, n, e) ∈ N by requiring

D(m, b) 6 D(n, e) < D(m, b+ 1) .
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Next, we set for b = b(m,n, e):

B(m, n, e) : =

b∑
i=0

iE(m, i) + (b+ 1) ·
(
D(n, e)−

b∑
i=0

E(m, i)
)

= V (m, b) + (b+ 1) ·
(
D(n, e)−D(m, b)

)
∈ N>1,

ε(m, n, e) : =
mneD(n, e)

B(m,n, e)
.

Lemma 3.2. With fixed m,n > 1 and e→∞, we have:

(1) b(m, n, e) =
(
m!en

n!

)1/m (
1 + o(1)

)
;

(2) B(m, n, e) = m
(m+1)!

(
m!
n! )(m+1)/men(m+1)/m

(
1 + o(1));

(3) if m < n, then ε(m, n, e)→ 0.

Proof. As to (1), for e→∞ we have b = b(m,n, e)→∞, so

D(m, b) =
bm

m!

(
1 + o(1)

)
6

en

n!

(
1 + o(1)

)
6

(b+ 1)m

m!

(
1 + o(1)

)
,

but the last term here is also bm

m!

(
1 + o(1)

)
, like the first term, and this easily yields

the asymptotics claimed for b. For (2), substituting the result of (1) in the asymp-
totics for D(m, b) as b→∞ leads to (b+1)·

(
D(n, e)−D(m, b)

)
= o
(
en(m+1)/m

)
, and

then in the asymptotics for V (m, b) yields the asymptotics claimed for B(m,n, e).
Now (3) is an easy consequence of (2). �

In the proof of Proposition 3.4 below we need a reasonable bound on the absolute
value of the determinant of a certain (D×D)-matrix of the form

(
aαi
)
|α|6e,i=1,...,D

.

We achieve this by expressing the matrix as a sum of simpler matrices. In this
connection we need a useful expression for the determinant of a sum of matrices.

Turning to this, let N ∈ N and consider an (N × N)-matrix a = (aµν)16µ,ν6N

over a field k. The determinant of an (N × N)-matrix over k is an alternating

multilinear function of its columns. The columns of a are a1, . . . , aN ∈ kN where
aν = (a1ν , . . . , aNν)t ∈ kN is the νth column of a. Thus

a = (a1, . . . , aN ) ∈ kN × · · · × kN (with N factors kN ).

Next, let a = a1 + · · · + ar with r ∈ N and a1, . . . , ar also (N × N)-matrices over
k, with aj having νth column ajν . Then

det a = det
(
a1, . . . , aN

)
= det

( r∑
j=1

aj1, . . . ,

r∑
j=1

ajN
)

=
∑
j

det
(
aj11 , . . . , a

jN
N

)
where j = (j1, . . . , jN ) ranges here and below over elements of {1, . . . , r}N . Let j
be given. If for some j in {1, . . . , r} the number of ν ∈ {1, . . . , N} with jν = j is

more than rank aj , then the column vectors aj11 , . . . , a
jN
N are k-linearly dependent,

so det
(
aj11 , . . . , a

jN
N

)
= 0. Thus if J ⊆ {1, . . . , r}N contains all j such that

#{ν ∈ {1, . . . , N} : jν = j} 6 rank aj , for j = 1, . . . , r,
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then

(∗) det a =
∑
j∈J

det
(
aj11 , . . . , a

JN
N

)
=
∑
j∈J

det
(
ajνµν
)

16µ,ν6N
.

We shall also use the following observation:

Lemma 3.3. Let A be a set and V a finite-dimensional subspace of the k-linear
space kA. Then for any N ∈ N, functions f1, . . . , fN ∈ V , and points a1, . . . , aN
in A, the rank of the (N ×N)-matrix

(
fµ(aν)

)
16µ,ν6N

over k is 6 dimV .

Proof. The map f 7→
(
f(a1), . . . , f(aN )

)
: V → kN is k-linear, so the image of this

map is a subspace of the k-linear space kN of dimension 6 dimV . �

Recall our norm |(t1, . . . , tm)| := max{|t1|, . . . , |tm|} on Rm, m > 1.

Proposition 3.4. Let e,m, n > 1, m < n, and k := b(m,n, e) + 1. Then there
is a constant K = K(m,n, e) with the following property: if f : (0, 1)m → Rn is
a strong k-parametrization, 0 < r 6 1, and a0, . . . , aD ∈ (0, 1)m with D = D(n, e)
are such that |ai − a0| 6 r for i = 1, . . . , D, then

|det
(
f(ai)

α
)
|α|6e, i=1,...,D

| < KrB(m,n,e).

Proof. Let f = (f1, . . . , fn) with fj : (0, 1)m → R. Taylor expansion around a0

gives for i = 1, . . . , D and j = 1, . . . , n, and with b := b(m,n, e):

fj(ai) = Pj(ai − a0) +Rij(ai − a0)

where Pj ∈ R[x1, . . . , xm] has degree 6 b, the remainder is given by a homogeneous
polynomial Rij ∈ R[x1, . . . , xm] of degree k = b + 1, and all coefficients of Pj and
Rij are bounded in absolute value by 1. Hence for |α| 6 e,

f(ai)
α =

n∏
j=1

fj(ai)
αj =

n∏
j=1

(
Pj(ai − a0) +Rij(ai − a0)

)αj
= Pα(ai − a0) +Riα(ai − a0)

with Pα ∈ R[x1, . . . , xm] of degree 6 b, the remainder Riα ∈ R[x1, . . . , xm] has only
monomials of degree > b, and every coefficient of Pα and Riα is bounded in absolute
value by D(m, k)|α|, the latter because

∏n
j=1 fj(ai)

αj is a product of |α| factors of

the form
∑
cβ(ai − a0)β , with the summation over the β ∈ Nm with |β| 6 k, and

real coefficients cβ with |cβ | 6 1. Note that D(m, k)|α| 6 D(m, k)e 6 C for a
positive constant c = c(m,n, e) depending only on m,n, e. Hence for |α| 6 e we

have Pα =
∑b
j=0 P

j
α where P jα ∈ R[x1, . . . , xm] is homogeneous of degree j. In the

matrix algebra RD×D this yields the sum decomposition(
f(ai)

α
)
α,i

=

b∑
j=0

(
P jα(ai − a0)

)
α,i

+
(
Riα(ai − a0)

)
α,i

=

k∑
j=0

(
P jiα(ai − a0)

)
α,i

where P jiα := P jα for j = 0, . . . , b and P kiα := Riα. For j = 0, . . . , b the rank of the

matrix
(
P jiα(ai − a0)

)
α,i

=
(
P jα(ai − a0)

)
α,i

is at most E(m, j) by Lemma 3.3, so
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expression (∗) for the determinant of such a sum gives

det
(
f(ai)

α
)
α,i

=
∑
j∈J

det
(
P jiiα(ai − a0)

)
α,i

where J is the set of all j = (j1, . . . , jD) ∈ {0, . . . , b+ 1}D such that

#{ν ∈ {1, . . . , D} : jν = j} 6 E(m, j), for j = 0, . . . , b.

Let j ∈ J . Then |det
(
P jiiα(ai − a0)

)
α,i
| 6 D!cDr|j|. As to the exponent |j|, let

dj ∈ N for j = 0, . . . , b be such that

#{ν ∈ {1, . . . , D} : jν = j} = E(m, j)− dj ,
and set f := #{ν ∈ {1, . . . , D} : jν = b+ 1}. Then

D = D(n, e) =

b∑
j=0

(E(m, j)− dj) + f = D(m, b)−
b∑
j=0

dj + f,

so f = D(n, e)−D(m, b) + d with d :=
∑b
j=0 dj . Hence

|j| =

b+1∑
ν=1

jν =

b∑
j=0

j
(
E(m, j)− dj

)
+ (b+ 1)f

= V (m, b)−
b∑
j=0

jdj + (b+ 1)
(
D(n, e)−D(m, b) + d

)
= V (m, b) + (b+ 1)

(
D(n, e)−D(m, b)

)
+

b∑
j=0

(b+ 1− j)dj

> B(m,n, e).

Therefore, |det
(
f(ai)

α
)
|α|6e, i=1,...,D

| 6 #J ·D!cDrB(m,n,e), which gives a con-

stant K = K(m,n, e) as claimed. �

We need one more simple observation:

Lemma 3.5. Let points b1, . . . , bD ∈ Qn with D = D(n, e) be given such that
H(b1), . . . ,H(bD) 6 t, where t > 1. Then

det
(
bαi
)
|α|6e,i ∈

Z
s

with s ∈ N>1, s 6 tneD.

Proof. For i = 1, . . . , D we have bi = (bi1, . . . , bin) with bij = cij/sij , cij , sij ∈ Z,
1 6 sij 6 t, so

bαi =

n∏
j=1

c
αj
ij /

n∏
j=1

s
αj
ij ∈

Z
siα

, siα :=

n∏
j=1

s
αj
ij .

Let {α : |α| 6 e} = {α1, . . . , αD}. Then det
(
bαi
)
|α|6e,i is a sum of terms of the form

±
∏D
i=1 b

ασ(i)
i where σ is a permutation of {1, . . . , D}. Now the term ±

∏D
i=1 b

ασ(i)
i

corresponding to σ lies in Z
sσ

with

sσ :=

D∏
i=1

siασ(i) =

D∏
i=1

n∏
j=1

s
ασ(i)j
ij
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and clearly s :=
∏D
i=1

∏n
j=1 s

e
ij is a common integer multiple of the integers sσ with

1 6 s 6 tneD, so s has the desired property. �

The following is Theorem 3 with more explicit values of k and ε.

Theorem 3.6. Let e,m, n > 1, m < n; set k := b(m,n, e) + 1, ε := ε(m,n, e).
Let X ⊆ Rn have a strong k-parametrization f : (0, 1)m → Rn. Then for all T at
most cT ε hypersurfaces in Rn of degree 6 e are enough to cover X(Q, T ), where
c = c(m,n, e) depends only on m,n, e.

Proof. Let K = K(m,n, e) be as in Proposition 3.4, and let T be given. With
D = D(n, e), let a1, . . . , aD ∈ (0, 1)m be such that f(a1), . . . , f(aD) ∈ X(Q, T ).
Then Lemma 3.5 gives s ∈ N>1 with s 6 TneD (so T−neD 6 1/s) such that

det
(
f(ai)

α
)
|α|6e,i=1,...D

∈ Z
s
.

Assume also that 0 < r 6 1 and a0 ∈ (0, 1)m are such that |ai − a0| 6 r for
i = 1, . . . , D. Can we guarantee that f(a1), . . . , f(aD) lie on a common hypersurface
in Rn of degree 6 e if r is small enough? Proposition 3.4 gives

|det
(
f(ai)

α
)
|α|6e, i=1,...,D

| < KrB , B = B(m,n, e).

So by Lemma 3.1 the answer to the question is yes: it is enough that KrB 6 T−neD,

that is, r 6
(
K−1T−neD

)1/B
. Next, considering closed balls of radius r with respect

to the norm | · |, centered at a point in (0, 1)m, how many are enough to cover
(0, 1)m? For m = 1, the interval (0, 1) is covered by e segments [a − r, a + r] with
0 < a < 1, for any natural number e with 2re > 1, and there is clearly such an
e with e 6 r−1. Hence at most r−m closed balls of radius r centered at points in

(0, 1)m are enough to cover (0, 1)m. Taking r =
(
K−1T−neD

)1/B
it follows that at

most Km/BTmneD/B = Km/BT ε hypersurfaces in Rn of degree 6 e are enough to
cover the set X(Q, T ). So the theorem holds with c = Km/B . �

4. Parametrization

Throughout R is an o-minimal field. As usual we identify Q with the prime subfield
of R. We drop the subscript R in expressions like (0, 1)R.

Let X ⊆ Rm be definable. Call X strongly bounded if X ⊆ [−N,N ]m for some N
in N. Call a definable map f : X → Rn strongly bounded if its graph Γ(f) ⊆ Rm+n

is strongly bounded; equivalently, X ⊆ Rm and f(X) ⊆ Rn are strongly bounded.
A partial k-parametrization of X is a definable Ck-map f : (0, 1)l → Rm such

that l = dimX (so X 6= ∅), the image of f is contained in X, and f (β) is strongly
bounded for all β ∈ Nl with |β| 6 k. A k-parametrization of X is a finite set of
partial k-parametrizations of X whose images cover X; note that then X is strongly
bounded. As a trivial example, if X is finite and strongly bounded, then X has the
k-parametrization {φa : a ∈ X}, where φa : (0, 1)0 → Rm takes the value a.

The basic ideas for the proofs of the next two parametrization theorems stem
from Yomdin [8] and Gromov [3]. They considered the semialgebraic case over R.
For us it is convenient to work in an arbitrary o-minimal field.

Theorem 4.1. Any strongly bounded definable set X ⊆ Rm has for every k > 1 a
k-parametrization.
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In the inductive proof of this theorem we also need a version for definable maps.
A k-reparametrization of a definable map f : X → Rn is a k-parametrization Φ
of its domain X such that for every φ : (0, 1)l → Rm in Φ, f ◦ φ is of class Ck

and (f ◦ φ)(β) is strongly bounded for all β ∈ Nl with |β| 6 k; note that then
{f ◦ φ : φ ∈ S} is a k-parametrization of f(X), provided dimX = dim f(X).

Theorem 4.2. Any strongly bounded definable map f : X → Rn, X ⊆ Rm has for
any k > 1 a k-reparametrization.

The next three sections are devoted to the proof of Theorems 4.1 and 4.2. When
convenient we can assume there that R is ℵ0-saturated, and thus non-archimedean.
This can always be arranged by taking a suitable elementary extension and noting
that the statements of 4.1 and 4.2 pull back to the original structure.

We often use the following facts, proved by repeated use of the Chain Rule:

Lemma 4.3. Let f : U → R, g : V → R be definable of class Ck, k > 1, with U, V
(definable) open subsets of R. Then f ◦ g : V ∩ g−1(U)→ R is of class Ck with

(f ◦ g)(k) =

k∑
i=1

(f (i) ◦ g) · pik
(
g(1), . . . , g(k−i+1)

)
where the pik ∈ Z[x1, . . . , xk−i+1] have constant term 0 and pkk = xk1 .

Lemma 4.4. With U ⊆ Rl, V ⊆ Rm, let f : U → Rm, g : V → Rn be definable of
class Ck such that f(U) ⊆ V and f (α) and g(β) are strongly bounded for all α ∈ Nl
and β ∈ Nm with |α| 6 k and |β| 6 k. Then the definable map g ◦ f : U → Rn is
of class Ck with strongly bounded (g ◦ f)(α) for all α ∈ Nl with |α| 6 k.

Some analytic facts about definable families. Here R is an o-minimal field.
For a definable map f : X → Rn, X ⊆ Rm, we define

‖f‖ := sup
a∈X
|f(a)| ∈ [0,+∞].

Note that if X is nonempty and closed and bounded in Rm and f is continuous,
then this supremum is a maximum.

Let m,n > 1, c ∈ R>0, X a nonempty definable subset of Rm, and (fs)0<s<1 a
definable family of maps fs : X → [−c, c]n. Then we have the definable (pointwise)
limit map f0 : X → [−c, c]n given by f0(a) = lims↓0 fs(a). Throughout this
subsection s ranges over the elements of R with 0 < s < 1.

Lemma 4.5. Suppose the family (fs) has a Lipschitz constant ` ∈ R>, that is,
|fs(a) − fs(b)| 6 `|a − b| for all s and all a, b ∈ X; in particular, the fs are
continuous. Then f0 has Lipschitz constant `, and is thus continuous. If in addition
X is closed and bounded in Rm, then ‖fs − f0‖ → 0 as s ↓ 0.

Proof. Given a, b ∈ X and taking the limit of |fs(a) − fs(b)| as s ↓ 0 we see that
f0 has Lipschitz constant `. Suppose X is closed and bounded. Definable Selection
gives a definable ‘curve’ γ : (0, 1)→ X such that |fs(γ(s))− f0(γ(s))| = ‖fs − f0‖
for all s. Suppose ‖fs− f0‖ does not tend to 0 as s ↓ 0. Then we have δ, ε > 0 with
‖fs − f0‖ > ε for all s 6 δ, and thus |fs(γ(s)) − f0(γ(s))| > ε for all s 6 δ. Now
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γ(s)→ a ∈ X as s ↓ 0. Then for s < δ,

ε 6 |fs(γ(s))− f0(γ(s))|
6 |fs(γ(s))− fs(a)|+ |fs(a)− f0(a)|+ |f0(a)− f0(γ(s))|
6 `|γ(s)− a|+ |fs(a)− f0(a)|+ |f0(a)− f0(γ(s))|

but each of the last three terms tends to 0 as s ↓ 0, a contradiction. �

Lemma 4.6. Suppose X is open in Rm, k > 1, and the maps fs are of class Ck

such that ‖f (α)
s ‖ 6 c for all s and all α ∈ Nm with |α| 6 k. Then f0 : X → Rn is

of class Ck−1, and f
(α)
s → f

(α)
0 pointwise as s ↓ 0, for all α ∈ Nm with |α| < k.

Proof. Let α ∈ Nm, |α| < k, and a ∈ X. Take ε > 0 such that the closed ball

B := [a1 − ε, a1 + ε]× · · · × [am − ε, am + ε]

centered at a with radius ε is contained in X. By MVT (the Mean Value Theorem)

the definable family (f
(α)
s ) has Lipschitz constant c onB, so by Lemma 4.5 converges

uniformly on B as s ↓ 0 to a continuous definable limit map B → [−c, c]n; since
a is arbitrary, this gives a continuous definable map f0,α : X → [−c, c]n such that

f
(α)
s → f0,α pointwise as s ↓ 0 (but uniformly on B). Note that f0,α = f0 for
α = (0, . . . , 0). To prove the rest we arrange n = 1 by considering the n component
functions of f0 separately; to simplify notation we also assume m = 1. (For general
m the derivatives are instead appropriate partial derivatives, where only one of the
m components varies.) So let i < k − 1, and let h range over the elements of R
with |h| 6 ε our job is to show that then

(∗) lim
h→0

f0,i(a+ h)− f0,i(a)

h
= f0,i+1(a).

MVT gives

f
(i)
s (a+ h)− f (i)

s (a)

h
= f (i+1)

s

(
a(s, h)

)
with a(s, h) between a and a + h. By Definable Selection we can take a(s, h)
definable as a function of (s, h). Then a(s, h) → a(h) as s ↓ 0 for a definable
function a(h) of h. Since i+ 1 < k we have by MVT

|f (i+1)
s

(
a(s, h)

)
− f (i+1)

s

(
a(h)

)
| 6 c|a(s, h)− a(h)| 6 c|h|.

Let δ(s) = maxb∈B |f (i+1)
s (b) − f0,i+1(b)|. Then δ(s) → 0 as s ↓ 0, by Lemma 4.5,

and f
(i+1)
s

(
a(s, h)

)
= f0,i+1

(
a(h)

)
+ δ(s, h) with |δ(s, h)| 6 c|h|+ δ(s), and thus

f
(i)
s (a+ h)− f (i)

s (a)

h
= f0,i+1

(
a(h)

)
+ δ(s, h).

Fixing h and taking limits as s ↓ 0 we obtain

f0,i(a+ h)− f0,i(a)

h
= f0,i+1(a(h)) + ε(h), |ε(h)| 6 c|h|.

Now a(h) lies between a and a+h, endpoints a, a+h included, which gives (∗). �

The above properly belongs to the topic of function spaces over o-minimal fields,
cf. M. Thomas [7].
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5. Reparametrizing unary functions

Much in this section is just bookkeeping, but we begin with a key analytic fact:

Lemma 5.1. Let f : (0, 1) → R be a definable Ck-function, k > 2, with strongly
bounded f (j) for 0 6 j 6 k − 1 and decreasing |f (k)|. Define g : (0, 1) → R by
g(t) = f(t2). Then g(j) is strongly bounded for 0 6 j 6 k.

Proof. Let t range over (0, 1). Lemma 4.3 gives

g(j)(t) =

j∑
i=0

ρij(t).f
(i)(t2), j = 0, . . . , k

where each function ρij is given by a 1-variable polynomial with integer coefficients,
of degree 6 i, and with ρjj(t) = 2jtj . All summands here are strongly bounded

except possibly the one with i = j = k, which is 2ktkf (k)(t2). So it suffices that
tkf (k)(t2) is strongly bounded. Let c ∈ Q>0 be a strong bound for f (k−1). We
claim that then |f (k)(t)| 6 4c/t for all t. Suppose towards a contradiction that
t0 ∈ (0, 1) is a counterexample, that is, |f (k)(t0)| > 4c/t0. Then the Mean Value
Theorem provides a ξ ∈ [t0/2, t0] such that

f (k−1)(t0)− f (k−1)(t0/2) = f (k)(ξ).(t0 − t0/2) = f (k)(ξ) · t0/2.

Since |f (k)| is decreasing by assumption, |f (k)(ξ)| > |f (k)(t0)| > 4c/t0. Hence

2c > |f (k−1)(t0)− f (k−1)(t0/2)| > (4c/t0) · (t0/2) = 2c.

This contradiction proves our claim. Then for all t,

|tkf (k)(t2)| 6 tk · (4c/t2) = 4ctk−2 6 4c

using k > 2 for the last inequality. �

The lemma fails for k = 1, with t 7→ t1/3 as a counterexample.

Lemma 5.2. Let f : (0, 1) → R be definable and strongly bounded. Then f has a
1-reparametrization Φ such that for every φ ∈ Φ, φ or f ◦φ is given by a 1-variable
polynomial with strongly bounded coefficients in R.

Proof. Take elements a0 = 0 < a1 < · · · < an < an+1 = 1 in R such that, for
i = 0, 1, . . . , n, f is of class C1 on (ai, ai+1), and either |f ′| 6 1 on (ai, ai+1), or
|f ′| > 1 on (ai, ai+1). Let i ∈ {0, . . . , n}. If |f ′| 6 1 on (ai, ai+1), define

φi : (0, 1)→ R, φi(t) := ai + (ai+1 − ai)t.
If |f ′| > 1 on (ai, ai+1), set

bi := lim
t↓ai

f(t), bi+1 := lim
t↑ai+1

f(t)

and as in this case f is continuous and strictly monotone on (ai, ai+1) we can
define φi : (0, 1) → R by φi(t) = f−1

(
bi + (bi+1 − bi)t

)
, where f−1 denotes the

compositional inverse of the restriction of f to (ai, ai+1), where f−1 has domain
(bi, bi+1) if bi < bi+1, and domain (bi+1, bi) if bi > bi+1.

In either case, φi maps (0, 1) onto (ai, ai+1) and both φi and f ◦ φi are of class
C1 with strongly bounded derivative. Moreover, φi or f ◦φi is given by a univariate
polynomial of degree 1 with strongly bounded coefficients in R. Thus

Φ := {φ0, . . . , φn, â1, . . . , ân}
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is a 1-reparametrization of f as required, where âi denotes the constant function
on (0, 1) with value ai. �

Lemma 5.3. Let k > 1 and suppose f : (0, 1) → R is definable and strongly
bounded. Then f has a k-reparametrization Φ such that for all φ ∈ Φ, φ or f ◦φ is
given by a 1-variable polynomial with strongly bounded coefficients in R.

Proof. By induction on k. The case k = 1 is Lemma 5.2. Suppose k > 2 and
Φ is a (k − 1)-reparametrization of f with the additional property. Let φ ∈ Φ.
Then {φ, f ◦ φ} = {g, h} where g is given by a univariate polynomial with strongly
bounded coefficients in R. Thus g is of class C∞, and g(i) is strongly bounded for
all i ∈ N, and h is of class Ck−1 with strongly bounded h(j) for j = 0, . . . , k− 1. In
order to apply Lemma 5.2 we use o-minimality: take elements

a0 = 0 < a1 < . . . < anφ < anφ+1
= 1

in R such that for i = 0, . . . , nφ, the function h is of class Ck on (ai, ai+1) and |h(k)|
is monotone on (ai, ai+1). Define θφ,i : (0, 1)→ R as t 7→ ai + (ai+1 − ai)t, if |h(k)|
is decreasing, and as t 7→ ai+1 +(ai−ai+1)t, otherwise; so θφ,i has image (ai, ai+1).

Then h ◦ θφ,i : (0, 1) → R is of class Ck, (h ◦ θφ,i)(j) is strongly bounded for j =

0, . . . , k− 1, and |(h ◦ θ(k)
φ,i | is decreasing. Let ρ : (0, 1)→ (0, 1) be the C∞-bijection

sending t to t2. By Lemma 5.2, the definable Ck-function h ◦ θφ,i ◦ ρ : (0, 1) → R
has strongly bounded jth derivative for j = 0, . . . , k. The function g ◦ θφ,i ◦ ρ is
still given by a 1-variable polynomial with strongly bounded coefficients in R, and
{g ◦ θφ,i ◦ρ, h ◦ θφ,i ◦ρ} = {φ ◦ θφ,i ◦ρ, f ◦ (φ ◦ θφ,i ◦ρ)}. The images of the functions
φ◦θφ,i ◦ρ with i ∈ {0, . . . , nφ} cover the image of φ apart from finitely many points.
So adding finitely many constant functions with domain (0, 1) and values in (0, 1)
to the set {φ ◦ θφ,i ◦ ρ : φ ∈ S, i = 0, . . . , nφ} we obtain a k-reparametrization of
f as claimed in the statement of the lemma. �

Corollary 5.4. Let f : X → R be definable and strongly bounded with X ⊆ R.
Then f has a k-reparametrization, for every k > 1.

Proof. The case that X is finite is obvious. Suppose X is infinite, and let k > 1.
Since X is a finite union of strongly bounded intervals and points, it has a k-
parametrization Φ by constant and linear functions. Now Lemma 5.3 provides for
every φ : (0, 1)→ R in Φ a k-reparametrization Ψφ of f ◦ φ : (0, 1)→ R, and then
{φ ◦ ψ : φ ∈ Φ, ψ ∈ Ψφ} is a k-reparametrization of f . �

Next one might reparametrize “curves” (0, 1)→ Rn with n > 2, but there is nothing
special about the univariate case here, so we do the general case:

Lemma 5.5. Let k,m > 1, and suppose that every strongly bounded definable
function X → R with X ⊆ Rl, l 6 m, has a k-reparameterization. Then every
strongly bounded definable map X → Rn with X ⊆ Rl, l 6 m and n > 1 has a
k-reparametrization.

Proof. Let n > 1, and suppose F : X → Rn and f : X → R with X ⊆ Rm

are definable, strongly bounded, and F has a k-reparametrization. It is enough
to show that then the strongly bounded definable map (F, f) : X → Rn+1 has a
k-reparametrization. The case of finite X being trivial, assume X is infinite. Let
Φ be a k-reparametrization of F and let φ ∈ Φ, φ : (0, 1)l → Rm, l = dimX 6 m.
Applying the hypothesis of the lemma to the map f ◦ φ : (0, 1)l → R we obtain a
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k-reparametrization Ψφ of it. Then using Lemma 4.4, {φ ◦ ψ : φ ∈ Φ, ψ ∈ Ψφ} is
a k-reparametrization of (F, f). �

Remark. At one point we need a slight variant of this lemma, with the same
proof: Let k,m > 1, and suppose that every strongly bounded definable function
(0, 1)l → R with l 6 m has a k-reparametrization. Then every strongly bounded
definable map (0, 1)l → Rn with l 6 m and n > 1 has a k-reparametrization.

Corollary 5.6. Let n > 1 and suppose f : X → Rn is definable and strongly
bounded, with X ⊆ R. Then f has a k-reparametrization, for every k > 1.

Proof. Immediate from Corollary 5.4 and the case m = 1 of Lemma 5.5. �

6. Convergence

In this section we assume that our ambient o-minimal field R is ℵ0-saturated.

Let k,N ∈ N>1 and let s, t range over (0, 1). Let
(
Fs
)

be a definable family of maps

Fs : (0, 1)→ (0, 1)N

of class Ck with strongly bounded derivatives F
(i)
s for i = 0, . . . , k. As R is ℵ0-

saturated, we have a uniform bound c ∈ N>1 with |F (i)
s (t)| 6 c for i = 0, . . . , k and

all s, t. Then o-minimality gives a definable limit map

F0 : (0, 1)→ [0, 1]N , F0(t) := lim
s↓0

Fs(t),

and F0 is of class Ck−1, with F
(i)
0 (t) = lims↓0 F

(i)
s (t) for i = 0, . . . , k − 1, by

Lemma 4.6. We have Fs = (Fs1, . . . , FsN ) and set Φs := {Fs1, . . . , FsN}, the set
of component functions of Fs. Suppose

⋃
φ∈Φs

image(φ) = (0, 1) for all s (so Φs is

a k-parametrization of (0, 1) for all s). Now F0 = (F01, . . . , F0N ) and we let Φ0 be
the set of functions φ|φ−1(0,1) with φ ∈ {F01, . . . , F0N}.

Lemma 6.1. The set Φ0 has the following properties:

(A)
⋃
ψ∈Φ0

image(ψ) is a cofinite subset of (0, 1).

(B) each function ψ ∈ Φ0 has as its domain an open subset of (0, 1) and is of
class Ck−1 with strongly bounded ψ(i) for i = 0, . . . , k − 1.

Proof. Suppose (A) fails. Then o-minimality gives a < b in (0, 1) such that [a, b]
is disjoint from image(ψ) for every ψ ∈ Φ0 and thus disjoint from image(F0i)

for i = 1, . . . , N . Let s be given. It follows from
⋃N
i=1 image(Fsi) ⊇ [a, b] and

o-minimality that for some i ∈ {1, . . . , N}, the image of Fsi contains a segment
[as, bs] with a 6 as < bs 6 b and bs − as > (b − a)/(N + 1). By o-minimality we
have a fixed i ∈ {1, . . . , N} and an ε ∈ (0, 1) such that for all s < ε the image of
Fsi contains a segment [as, bs] with a 6 as < bs 6 b and bs − as > (b− a)/(N + 1).
Take δ ∈ (0, 1/2) so small that 2cδ < (b− a)/(N + 1) and let s < ε. Now |F ′si| 6 c,
so Fsi has Lipschitz constant c, and thus the Fsi-images of the intervals (0, δ) and
(1 − δ, 1) cannot cover a segment [as, bs] as above. Therefore, we have a point
ts ∈ [δ, 1− δ] such that Fs,i(ts) ∈ [a, b]. (We do not need the as, bs any longer.) By
Definable Selection we can take ts as a definable function of s ∈ (0, ε). Then for
t0 := lims↓0 ts we have 1− δ 6 t0 6 1 + δ. Now for s < ε we have

|F0i(t0)− Fsi(ts)| 6 |F0i(t0)− F0i(ts)|+ |F0i(ts)− Fsi(ts)|.
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The first summand on the right tends to 0 as s ↓ 0 because F0i is continuous, and
the second does so because Fsi → F0i unformly on [δ, 1−δ] as s ↓ 0, by Lemma 4.5.
Hence F0i(t0) ∈ [a, b], contradicting the defining property of [a, b]. This finishes

the proof of (A). As to (B), just note that F0 is of class Ck−1 with ‖F (i)
0 ‖ 6 c for

i = 0, . . . , k − 1 by Lemma 4.6. �

We now apply this lemma to set up the inductive process for proving Theorems 4.1
and 4.2. For the rest of this section we fix an m > 1.

Notation. For definable open U ⊆ Rm+1, V b U means that V is a definable
open subset of Rm+1 with V ⊆ U and dim(U \ V ) 6 m.

Here is some notation about “changing the last variable”: For φ : (0, 1)→ R, set

Iφ : (0, 1)m+1 → Rm+1, (t1, . . . , tm, tm+1) 7→
(
t1, . . . , tm, φ(tm+1)

)
,

and for f : X → Rn, X ⊆ Rm+1 we set

fφ := f ◦ Iφ : (Iφ)−1(X)→ Rn, (t1, . . . , tm, tm+1) 7→ f
(
t1, . . . , tm, φ(tm+1)

)
.

Lemma 6.2. Let k > 2, U b (0, 1)m+1 and let f : U → R be a strongly bounded de-
finable C1-function. Suppose also that ∂f/∂xi is strongly bounded for i = 1, . . . ,m.
Then there is a (k − 1)-parametrization Φ of a cofinite subset of (0, 1) and a set
V b U such that for every φ ∈ Φ: Iφ(V ) ⊆ U , fφ is of class C1 on V , and ∂fφ/∂xi
is strongly bounded on V , for i = 1, . . . ,m+ 1.

Proof. We construct Φ from the limit set Φ0 of a suitable family (Φs)0<s<1 as
described above. (Lemma 6.1 almost gives that Φ0 is a (k − 1)-parametrization.)
O-minimality gives W b U such that f is of class C1 on W . For s, t ∈ (0, 1), let
Ws(t) be the set of those a ∈ [0, 1]m such that the open ball in Rm+1 centered
at (a, t) with radius s is entirely contained in W ; note that Ws(t) × {t} ⊆ W , in
particular, Ws(t) ⊆ (0, 1)m, and Ws(t) is closed in Rm, not just in (0, 1)m. Thus
for 0 < s, t < 1 we have a definable continuous function

a 7→ | ∂f

∂xm+1
(a, t)| : Ws(t)→ R,

which achieves its maximum value at some point as(t) ∈ Ws(t), provided Ws(t)
is nonempty. By Definable Selection we may take (s, t) 7→ as(t) to be definable,
taking by convention the value (1/2, . . . , 1/2) ∈ (0, 1)m if Ws(t) = ∅. Then for all
s, t ∈ (0, 1) and a ∈Ws(t) we have

(∗) (as(t), t) ∈W, | ∂f

∂xm+1
(as(t), t)| > |

∂f

∂xm+1
(a, t)|.

Now consider the definable family (gs)0<s<1 of maps

gs : (0, 1)→ (0, 1)m ×R, gs(t) :=
(
as(t), f(as(t), t)

)
,

where for convenience we set f
(
as(t), t

)
:= 0 if

(
as(t), t

)
/∈ U . By Corollary 5.6

there is for all s ∈ (0, 1) a k-reparametrization of gs. Now R is ℵ0-saturated, and
together with Definable Selection this yields an N ∈ N>1 and a definable family
(Fs)0<s<1 of maps Fs : (0, 1) → (0, 1)N such that Φs := {Fs1, . . . , FsN} is a k-
reparametrization of gs for 0 < s < 1.

Let Φ0 be the limit, as s ↓ 0, of this family as described in Lemma 6.1. By
partitioning the domains of the functions in Φ0 and restricting these functions
accordingly we obtain a finite collection Φ of functions taking values in (0, 1) whose
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domains are subsets of (0, 1) and are either singletons or subintervals of (0, 1), and
such that any function in Φ whose domain is a subinterval of (0, 1) is either constant
or strictly monotone. By throwing away the constant functions in Φ (which include
those whose domain is a singleton) and composing each remaining function with a
suitable injective linear function with coefficients in [0, 1], we arrange that Φ is a
(k − 1)-parametrization of a cofinite subset of (0, 1). Now set

V := U \
⋃
φ∈Φ

I−1
φ [(0, 1)m+1 \W ].

The injectivity (and continuity) of the φ ∈ Φ gives V b U . For φ ∈ Φ we have
Iφ(V ) ⊆ W ⊆ U and so, using k > 2, the function fφ is of class C1 on V . Let
φ ∈ Φ; it only remains to show that then ∂fφ/∂xi is strongly bounded on V for
i = 1, . . . ,m + 1. Since R is ℵ0-saturated, it is enough to show, given any point
(a0, t0) ∈ V , that ∂fφ/∂xi is strongly bounded just at this point, for i = 1, . . . ,m+1.

Since (a0, φ(t0)) ∈ W ⊆ U , this is certainly the case for i = 1, . . . ,m. For the
remaining case i = m+ 1, note first that we have a linear function λ : R→ R with
coefficients in [0, 1] and a function ψ ∈ Φ0 such that λ maps the interval (0, 1) into
the domain of ψ and φ(t) = ψ(λ(t)) for all t ∈ (0, 1). So it is enough to show for
t1 in the domain of ψ with

(
a0, ψ(t1)

)
∈ W that ψ′(t1) · (∂f/∂xm+1)

(
a0, ψ(t1)

)
is

strongly bounded. Let such a t1 be given. By definition of Φ0 we have a definable
family (φs)0<s<1 of functions φs ∈ Φs such that lims↓0 φs(t1) = ψ(t1) and, as k > 2,
lims↓0 φ

′
s(t1) = ψ′(t1). Hence for all small enough s ∈ (0, 1):

(i)
(
a0, φs(t1)

)
∈ W , |(∂f/∂xm+1)

(
a0, ψ(t1)

)
− (∂f/∂xm+1)

(
a0, φs(t1)

)
| 6 1,

by the continuity of ∂f/∂xm+1 on W ;
(ii) |φ′s(t1)− ψ′(t1)| · |(∂f/∂xm+1)(a0, ψ(t1))| 6 1;
(iii) a0 ∈ Ws

(
φs(t1)

)
: use that

(
a0, ψ(t1)

)
∈ W , that W is open in Rm+1, and

that φs(t1)→ ψ(t1) as s ↓ 0.

Take s ∈ (0, 1) such that (i), (ii), (iii) hold. Then

|ψ′(t1) · ∂f

∂xm+1

(
a0, ψ(t1)

)
| 6 |φ′s(t1)| · | ∂f

∂xm+1

(
a0, ψ(t1)

)
|+ 1, by (ii),

6 |φ′s(t1)| · | ∂f

∂xm+1

(
a0, φs(t1)

)
|+ |φ′s(t1)|+ 1, by (i),

6 |φ′s(t1)| · | ∂f

∂xm+1
(b)|+ |φ′s(t1)|+ 1,

by (iii) and (∗), where b : =
(
as(φs(t1)), φs(t1)

)
∈W.

Now |φ′s(t1)| is strongly bounded, as φs ∈ Φs, so it suffices to show that

φ′s(t1) · ∂f

∂xm+1
(b)

is strongly bounded. Since Φs is a k-reparametrization of gs, we have:

(iv) (as ◦ φs)′(t1) is strongly bounded, and
(v) (d/dt)|t=t1f

(
as(φs(t)), φs(t)

)
is strongly bounded.

By the Chain Rule, the quantity in (v) equals

m∑
i=1

(asi ◦ φs)′(t1) · ∂f
∂xi

(b) + φ′s(t1) · ∂f

∂xm+1
(b)
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The left hand sum here is strongly bounded by (iv) and the strong boundedness
of the functions ∂f/∂xi for i = 1, . . . ,m. Hence the right hand term is strongly
bounded, which we already showed to be enough. �

Corollary 6.3. Let k > 2, n > 1, U b (0, 1)m+1 and let f : U → Rn be a
strongly bounded definable C1-map. Suppose also that ∂f/∂xi is strongly bounded
for i = 1, . . . ,m. Then there is a (k − 1)-parametrization Φ of a cofinite subset of
(0, 1) and a set V b U such that for every φ ∈ Φ: Iφ(V ) ⊆ U , fφ is of class C1 on
V , and ∂fφ/∂xi is strongly bounded on V for i = 1, . . . ,m+ 1.

Proof. For n = 1 this is Lemma 6.2. As an inductive assumption, let f : U → Rn be
as in the hypothesis of the corollary and Φ and V as in its conclusion. Let g : U → R
be a strongly bounded definable C1-function such that ∂g/∂xi is strongly bounded
for i = 1, . . . ,m. Then the strongly bounded definable C1-map (f, g) : U → Rn+1

has strongly bounded partial ∂(f, g)/∂xi = (∂f/∂xi, ∂g/∂xi) for i = 1, . . . ,m. It
now suffices to show that there is a (k−1)-parametrization Θ of a cofinite subset of
(0, 1) and a set W b U such that for all θ ∈ Θ: Iθ(W ) ⊆ U , (f, g)θ is of class C1 on
W , and ∂(f, g)θ/∂xi is strongly bounded on W for i = 1, . . . ,m+ 1. To construct
Θ and W , let φ ∈ Φ. Then applying Lemma 6.2 to the function gφ : V → R gives a
(k− 1)-parametrization Ψφ of a cofinite subset of (0, 1) and a set Vφ b V such that
for all ψ ∈ Ψφ: Iψ(Vφ) ⊆ V and (gφ)ψ = gφ◦θ is of class C1 on Vφ, and ∂gφ,ψ/∂xi
is strongly bounded on Vφ. Now we set

Θ := {φ ◦ ψ : φ ∈ Φ, ψ ∈ Ψφ}, W :=
⋂
φ∈Φ

Vφ.

It follows easily from Lemma 4.4 that Θ and W have the desired properties. �

To state the next corollary, let U be a definable open subset of Rm+1. Then we
have for t ∈ R the definable open subset U t of Rm given by

U t = {(t1, . . . , tm) ∈ Rm : (t1, . . . , tm, t) ∈ U}.
We call a definable map f : U → Rn of class Ck in the first m variables if for every
t ∈ R the (definable) map

f t : U t → Rn, (t1, . . . , tm) 7→ f(t1, . . . , tm, t)

is of class Ck. In that case f (α) for α ∈ Nm with |α| 6 k denotes the definable map

(t1, . . . , tm, t) 7→ (f t)(α)(t1, . . . , tm) : U → Rn,

which for fixed t is continuous as a function of (t1, . . . , tm).

Corollary 6.4. Let k, n > 1, U b (0, 1)m+1 and let f : U → Rn be a strongly
bounded definable map that is of class Ck in the first m variables, such that f (α)

is strongly bounded for all α ∈ Nm with |α| 6 k. Then for every l 6 k there is a
Vl b U and a k-parametrization Φl of a cofinite subset of (0, 1) such that for all

φ ∈ Φl: Iφ(Vl) ⊆ U , fφ is of class Ck on Vl and f
(α)
φ :=

(
fφ
)(α)

is strongly bounded

on Vl for all α ∈ Nm+1 with |α| 6 k, αm+1 6 l.

Proof. O-minimality gives V0 b U such that f is of class Ck on V0. Then V0 and
Φ0 = {id|(0,1)} have the desired properties for l = 0. Suppose, inductively, that
l < k and Vl and Φl are as stated in the Corollary. Let

∆ := {α ∈ Nm+1 : |α| 6 k − 1, αm+1 6 l},
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set ñ := #∆ ·#Φl, and let F1, . . . , Fñ : Vl → Rn enumerate the set of C1-maps

{f (α)
φ : Vl → Rn : α ∈ ∆, φ ∈ Φl}.

Then we can apply Corollary 6.3 to F := (F1, . . . , Fñ) : Vl → Rñ·n in the role of f ,
and Vl, ñ ·n, k+ 1 instead of U, n, k. This gives a k-parametrization Ψ of a cofinite
subset of (0, 1) and a set Vl+1 b Vl such that for all ψ ∈ Ψ: Iψ(Vl+1) ⊆ Vl, Fψ is of
class C1 on Vl+1, and ∂Fψ/∂xi is strongly bounded on Vl+1 for i = 1, . . . ,m + 1.
Next we set

Φl+1 := {φ ◦ ψ : φ ∈ Φl, ψ ∈ Ψ}.
Then Φl+1 is a k-parametrization of a cofinite subset of (0, 1) and Iθ(Vl+1) ⊆ U ,
with fθ of class Ck for all θ ∈ Φl+1.

Let θ = φ ◦ ψ with φ ∈ Φl, ψ ∈ Ψ and let α ∈ Nm+1, |α| 6 k, αm+1 6 l + 1;

it remains to show that then f
(α)
θ is strongly bounded on Vl+1. If αm+1 = 0, then

this holds because f
(α)
θ =

(
f

(α)
φ

)
ψ

and f
(α)
φ is strongly bounded on Vl. Suppose

that αm+1 > 0. Then α = β + (0, . . . , 0, j) with βm+1 = 0 and j = αm+1 > 1, so
for a = (a1, . . . , am, am+1) ∈ Vl+1 we have

f
(α)
θ (a) =

∂jf
(β)
θ

∂xjm+1

(a) =
∂j
(
f

(β)
φ

)
ψ

∂xjm+1

(a)

=

j∑
i=1

∂if
(β)
φ

∂xim+1

(
a1, . . . , am, ψ(am+1)

)
· pij

(
ψ(1)(am+1), . . . , ψ(j−i+1)(am+1)

)
using Lemma 4.3 and the polynomials pij from that lemma for the last equal-

ity. Since we assumed inductively that the
∂if

(β)
φ

∂xim+1
are strongly bounded on Vl and

ψ(1), . . . , ψ(k) are strongly bounded on (0, 1), f
(α)
θ is strongly bounded on Vl+1. �

7. Finishing the proofs of the parametrization theorems

We continue to work in an ambient ℵ0-saturated o-minimal field R. We consider
the following statements depending on m:

(I)m For all k, n > 1, every strongly bounded definable map f : (0, 1)m → Rn

has a k-reparametrization.
(II)m For all k > 1, every strongly bounded definable set X ⊆ Rm+1 has a

k-parametrization.

It is clear that (I)0 and (II)0 hold; (I)1 holds by Corollary 5.6. We proceed by
induction to show that (I)m and (II)m hold for all m. So let m > 1 and suppose
that (I)l holds for all l 6 m and that (II)l holds for all l < m. We show that then
(II)m holds and next that (I)m+1 holds. For (II)m, let k > 1 and let X ⊆ Rm+1 be
definable and strongly bounded. In order to show that X has a k-parametrization
we can reduce to the case that X is a cell in Rm+1; we do the more difficult of the
two cases, namely X = (f, g)Y where Y is a (strongly bounded) cell in Rm, and
f, g : Y → R are strongly bounded continuous definable functions with f(y) < g(y)
for all y ∈ Y ; the other case, where X is the graph of such a function Y → R, is
left to the reader.

Using (II)m−1 we have a k-parametrization Φ of Y . Set l := dimY . Let φ ∈ Φ
be given. Then φ : (0, 1)l → Y and (I)l gives a k-reparametrization Ψφ of the map
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(f ◦ φ, g ◦ φ) : (0, 1)l → R2. For ψ ∈ Ψφ we have ψ : (0, 1)l → (0, 1)l, and we define
θφ,ψ : (0, 1)l+1 → X by

θφ,ψ(s, t) :=
(
(φ ◦ ψ)(s), (1− t) · (f ◦ φ ◦ ψ)(s) + t · (g ◦ φ ◦ ψ)(s)

)
where (s, t) = (s1, . . . , sl, t) ∈ (0, 1)l+1. Then the set {θφ,ψ : φ ∈ Φ, ψ ∈ Ψφ} is
readily seen to be a k-parametrization of X, and we have established (II)m.

For (I)m+1 we need only do the case n = 1 by the remark following the proof of
Lemma 5.5. So let k > 1 and let f : (0, 1)m+1 → R be a strongly bounded definable
function; our job is to show that f has a k-reparametrization.

In the rest of this proof t ranges over the interval (0, 1). By (I)m there is for all
t a k-reparametrization of the function f t : (0, 1)m → R given by f t(s) = f(s, t).
Using a saturation and definable selection argument as in the proof of Lemma 6.2
gives an N ∈ N>1 and definable families (φt1), . . . , (φtN ) of maps

φtj : (0, 1)m → (0, 1)m (j = 1, . . . , N)

such that Φt := {φt1, . . . , φtN} is for every t a k-reparametrization of f t.

Now, for j = 1, . . . , N we define the function fj : (0, 1)m+1 → R by

fj(s, t) := f
(
φj(s, t), t

)
,

where φj : (0, 1)m+1 → (0, 1)m is given by φj(s, t) := φtj(s). Consider the map

F :=
(
φ1, . . . , φN , f1, . . . , fN

)
: (0, 1)m+1 → RNm+N .

Then the hypotheses of Corollary 6.4 are satisfied for k and (0, 1)m+1 in the role of
f and U , and Nm+N for n: this is just restating that Φt is a k-reparametrization
of f t, uniformly in t. The conclusion of that corollary for l = k gives a set V b
(0, 1)m+1 and a k-parametrization Ψ of a cofinite subset of (0, 1) such that for all
ψ ∈ Ψ the map Fψ : (0, 1)m+1 → RNm+N is of class Ck on V with strongly bounded

F
(α)
ψ on V for all α ∈ Nm+1 with |α| 6 k.

For j = 1, . . . , N and ψ ∈ Ψ, let φj ∗ ψ : (0, 1)m+1 → (0, 1)m+1 be given by

(φj ∗ ψ)(s, t) :=
(
φj(s, ψ(t)), ψ(t)

)
=
(
φ
ψ(t)
j (s), ψ(t)

)
.

The images of the ψ ∈ Ψ cover a set (0, 1) \ {t1, . . . , td} and for every t the images
of φt1, . . . , φ

t
N cover (0, 1)m, and thus the images of the above φj ∗ψ cover (0, 1)m+1

apart from finitely many hyperplanes xm+1 = ti. Setting

W :=
⋃

16j6N, ψ∈Ψ

(φj ∗ ψ)(V )

it follows that the definable set (0, 1)m+1 \W has dimension 6 m. Using the now
established (II)m, let Θ1 be a k-parametrization of V and Θ2 a k-parametrization
of (0, 1)m+1 \W . For θ ∈ Θ2 we have θ : (0, 1)l → (0, 1)m+1 with l 6 m and then
(I)l yields a k-reparametrization Λθ of the function f ◦θ : (0, 1)l → R. The required
k-reparametrization of f is now given by

{(φj ∗ ψ) ◦ χ : j = 1, . . . , ψ ∈ Ψ, χ ∈ Θ1} ∪ {θ ◦ λ̂ : θ ∈ Θ2, λ ∈ Λθ}

where λ̂ : (0, 1)m+1 → (0, 1)l (for l 6 m as above) is given by λ̂(t1, . . . , tm+1) :=
λ(t1, . . . , tl). This finishes the proof of (I)m+1, and the induction is complete. In
particular, Theorem 4.1 is now established. Theorem 4.2 requires one more easy
step and we leave this to the reader.
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Corollary 7.1. Let k, n > 1; suppose X ⊆ [−1, 1]n is definable, d := dimX > 0.
Then there exists a finite set Φ of definable Ck-maps φ : (0, 1)d → Rn such that

(i)
⋃
φ∈Φ image(φ) = X;

(ii) |φ(α)(s)| 6 1 for all φ ∈ Φ and α ∈ Nd with |α| 6 k and all s ∈ (0, 1)d.

Proof. Let Φ∗ be a k-parametrization of X. Then (i) holds for Φ∗ instead of Φ
and (ii) holds for Φ∗ instead of Φ, with a certain c ∈ N>1 in place of 1. Cover
(0, 1)d with (c + 1)d translates of the ‘box’ (0, 1

c )d and for each such translate B,

let λB : (0, 1)d → B be the obvious linear (that is, affine) bijection. Then the set of
maps φ ◦ λB as φ varies over Φ∗ and B over the above translates is the required Φ,
since (φ◦λB)(α) = c−|α| ·

(
φ(α) ◦λB

)
for such φ and B and α ∈ Nd with |α| 6 k. �

Definable Selection and ℵ0-saturation lead to a uniform version:

Corollary 7.2. Let d, k,m, n be given with k, n > 1 and suppose E ⊆ Rm and

Z ⊆ E × [−1, 1]n ⊆ Rm+n

are definable with dimZ(s) = d for all s ∈ E. Then there are N ∈ N>1 and a
definable set F ⊆ E × Rd × RNn such that for all s ∈ E, F (s) ⊆ Rd × RNn is the
graph of a Ck-map (φ1, . . . , φN ) : (0, 1)d → (Rn)N = RNn such that:

(i)
⋃N
j=1 image(φj) = Z(s);

(ii) |φ(α)
j (t)| 6 1 for j = 1, . . . , N , α ∈ Nd with |α| 6 k, and t ∈ (0, 1)d.

The implicit proof of Corollary 7.2 uses that R is ℵ0-saturated, but this corollary
goes through without this assumption, since we can always pass to an ℵ0-saturated
elementary extension. Thus it applies to o-minimal expansions of the real field, and
this in turn can be combined with Theorem 3.6 to give:

Corollary 7.3. Let n > 1 and let an o-minimal expansion R̃ of the real field be
given. Suppose E ⊆ Rm and Z ⊆ E × [−1, 1]n ⊆ Rm+n are definable. Then there
is for every ε > 0 an e = e(ε, n) and a K with the following property: for all s ∈ E
with dimZ(s) < n and all T , at most KT ε many hypersurfaces in Rn of degree 6 e
are enough to cover the set Z(s)(Q, T ).

The expression “e = e(ε, n)” means: e can be chosen to depend only on ε and n.

The proof below uses the numbers ε(d, n, e) := dneD(n,e)
B(d,n,e) from Section 3.

Proof. Replacing E by finitely many definable subsets over each of which dimZ(s)
takes a given value, we arrange that for a certain d < n we have dimZ(s) = d for all
s ∈ E. If d = 0, then we haveK ∈ N>1 such that #Z(s) 6 K for all s ∈ E, and so at
most K hypersurfaces in Rn of degree 6 1 are enough to cover Z(s). Assume d > 1.
Take e > 1 such that ε(d, n, e) 6 ε and set k := b(d, n, e) + 1 as in Theorem 3.6.
Corollary 7.2 gives an N ∈ N>1 and for every s ∈ E maps φ1, . . . , φN : (0, 1)d → Rn

of class Ck such that Z(s) =
⋃N
j=1 image(φj) and |φ(α)

j (t)| 6 1 for j = 1, . . . , N and

all α ∈ Nd with |α| 6 k and all t ∈ (0, 1)d. Applying Theorem 3.6 to each map φj
separately we obtain that for K := N ·C(d, n, e) at most KT ε many hypersurfaces
in Rn of degree 6 e are enough to cover the set Z(s)(Q, T ). �
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8. Strengthening and Extending the Counting Theorem

In this section we fix an o-minimal expansion R̃ of the real field, and definable is

with respect to R̃. Throughout n > 1 and E ⊆ Rm and X ⊆ E ×Rn are definable.
A closer look at the proof of Theorem 2.5 gives useful extra information about

the definable subsets V (s) of X(s)alg: Theorem 8.4. To express this information
efficiently requires the notion of a block family, which is here simpler than in [5]
and well suited to the inductive set-up of Section 2.

A block family version of the Counting Theorem. Let d 6 n. A block in Rn
of dimension d is a definable connected open subset of a semialgebraic set A ⊆ Rn
for which dimaA = d for all a ∈ A. Thus the empty subset of Rn counts as a
block in Rn of dimension d, but if B is a nonempty block in Rn of dimension d,
then dimB = d. Also, a nonempty block of dimension 0 in Rn consists just of one
point. A block family in Rn of dimension d is a definable set V ⊆ E×Rn, all whose
sections V (s) are blocks in Rn of dimension d. Here are two easy lemmas:

Lemma 8.1. Suppose U ⊆ Rm is open and semialgebraic, m > 1, and f : U → Rn
is semialgebraic and maps U homeomorphically onto f(U). Then f maps any block
B ⊆ U in Rm of dimension d 6 m onto a block f(B) in Rn of dimension d.

In the proof of Theorem 8.4 we apply Lemma 8.1 for every I ⊆ {1, . . . , n} to the
map a 7→ b : {a ∈ Rn : ai 6= 0 for i ∈ I} → Rn with bi = a−1

i for i ∈ I and bi = ai
for i /∈ I; these maps extend the maps fI from Section 2.

Lemma 8.2. Let B be a block in Rn of dimension d 6 n. Then B is a union of
connected semialgebraic subsets of dimension d.

Proof. Take semialgebraic A ⊆ Rn such that dimaA = d for all a ∈ A, and B is an
open subset of A. For b ∈ B, take a semialgebraic open neighborhood U of b in A
such that U ⊆ B. Now use that the connected components of U are open in A, by
[2, (III, 2.18)], and thus of dimension d. �

Corollary 8.3. Let Y ⊆ Rn and 1 6 d 6 n.

(i) if B ⊆ Y and B is a block in Rn of dimension d, then B ⊆ Y alg;
(ii) if V is a block family in Rn of dimension d, then the union of the sections

of V that are contained in Y is contained in Y alg.

For the inductive proof below we also define a block family in R0 of dimension 0 to
be a definable set V ⊆ E × R0, with E × R0 identified with E in the obvious way.

Theorem 8.4. Let ε be given. Then there are a natural number N = N(X, ε) > 1,
a block family Vj ⊆ (E × Fj) × Rn in Rn of dimension dj 6 n with definable
Fj ⊆ Rmj , for j = 1, . . . , N , and a constant c = c(X, ε), such that:

(i) Vj(s, t) ⊆ X(s) for j = 1, . . . , N and (s, t) ∈ E × Fj;
(ii) for all T and all s ∈ E, X(s)(Q, T ) is covered by at most cT ε blocks Vj(s, t),

(1 6 j 6 N, t ∈ Fj).

This yields an improved Theorem 2.5 as follows. Let V1, . . . , VN and c be as in
Theorem 8.4. Then for all s ∈ E the definable set V (s) ⊆ Rn given by

V (s) :=
⋃

dj>1,t∈Fj

Vj(s, t)

is contained in X(s)alg and N(X(s) \ V (s), T ) 6 cT ε for all T .
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Proof. If Theorem 8.4 holds for definable sets X1, . . . , Xν ⊆ E × Rn, ν ∈ N, then
also for X = X1 ∪ · · · ∪Xν . We shall tacitly use this below.

We proceed by induction on n, and follow the proof of Theorem 2.5 closely. Set
V0(s) := interior of X(s). Then [2, (III, 3.6)] gives M ∈ N>1 such that for all s ∈ E,

#{connected components of V0(s)} 6 M.

Definable Selection and the lexicographic ordering on Rn give definable subsets
V1, . . . , VM of E×Rn such that for all s ∈ E the sets V1(s), . . . , VM (s) are connected

(possibly empty), open in V0(s), pairwise disjoint, with V (s) =
⋃M
i=1 Vi(s). So

V1, . . . , VM are block families in Rn of dimension n; we make them the first M of the
V1, . . . , VN to be constructed. Now replacing X with X \ V0 we arrange that X(s)
has empty interior for all s ∈ E. Applying Lemma 8.1 to the natural extensions of
the maps fI , I ⊆ {1, . . . , n}, we arrange also that X(s) ⊆ [−1, 1]n for all s ∈ E.

Next, take e and k = k(n, e) as in the proof of Theorem 2.4. So we have
C = C(X, ε) ∈ R> such that for any s ∈ E, X(s)(Q, T ) is covered by at most CT ε/2

many hypersurfaces in Rn of degree 6 e. Therefore it suffices to find V1, . . . , VN
and c as in the theorem but with (ii) replaced by

(ii)∗ for all T , all s ∈ E, and all hypersurfaces H of degree 6 e, (X(s)∩H)(Q, T )
is covered by at most c

CT
ε/2 blocks Vj(s, t), (1 6 j 6 N, t ∈ Fj);

We use again the semialgebraic sets H, C1, . . . , CL ⊆ F ×Rn, and the definable sets
Yl ⊆ E × F × Rnl , l = 1, . . . , L, as in the proof of Theorem 2.4. Since nl < n, the
induction assumption gives a natural number Nl = N(Yl, ε) > 1, a block family

Wl,i ⊆
(
(E × F )×Gl,i

)
× Rnl

in Rnl of dimension dl,i 6 nl with definable Gl,i ⊆ Rml,i , for i = 1, . . . , Nl, and
Bl = Bl(Yl, ε) ∈ R>, such that

(i)′ Wl,i(s, t, g) ⊆ Yl(s, t) for i = 1, . . . , Nl, (s, t, g) ∈ (E × F )×Gl,i;
(ii)′ for all T and all (s, t) ∈ E × F , Yl(s, t)(Q, T ) is covered by at most BlT

ε/2

blocks Wl,i(s, t, g), (1 6 i 6 Nl, g ∈ Gl,i).
Set N := N1 + · · ·+NL, and for l = 1, . . . , L, 1 6 i 6 Nl and j = N1 + · · ·+Nl−1 +i,
set Fj := F ×Gl,i, and let Vj ⊆ (E × Fj)× Rn be the definable set given by

Vj
(
s, (t, g)

)
= Cl(t) ∩ p−1

il

(
Wl,i(s, t, g)

)
, (s ∈ E, t ∈ F, g ∈ Gl,i),

so Vj is a block family in Rn of dimension dl,i < n, by Lemma 8.1. It is easy to
check that V1, . . . , VN and c := C(B1 + · · ·+BL) are as desired. �

A generalization. In this subsection we fix d > 1. Instead of rational points we
now allow points with coordinates in a Q-linear subspace of R of dimension 6 d.
Let λ = (λ1, . . . , λd) ∈ Rd, and set Qλ := Qλ1 + · · ·+Qλd ⊆ R. For a ∈ Qλ we set

Hλ(a) := min{H(q) : q ∈ Qd, q · λ = a} ∈ N>1.

Here q · λ := q1λ1 + · · ·+ qdλd. We define a height function Hλ on (Qλ)n ⊆ Rn by

Hλ(a) = max{Hλ(a1), . . . ,Hλ(an)} for a = (a1, . . . , an) ∈ (Qλ)n.

For Y ⊆ Rn we introduce its finite subsets Yλ(T ) and their cardinalities:

Yλ(T ) := {a ∈ Y ∩ (Qλ)n : Hλ(a) 6 T}, Nλ(Y, T ) := #Yλ(T ).
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Theorem 8.5. Let any definable Y ⊆ Rn and any ε be given. Then there is a
constant c = c(Y, d, ε) ∈ R> such that for all T and all λ ∈ Rd,

Nλ(Y tr, T ) 6 cT ε.

Proof of Theorem 8.5. First a couple of useful lemmas about blocks:

Lemma 8.6. If B is a block in Rn (of some dimension) and p, q ∈ B, then γ(0) = p
and γ(1) = q for some continuous semialgebraic path γ : [0, 1]→ B.

Proof. Even better, let B be a connected open subset of a semialgebraic set A ⊆ Rn,
and let p ∈ B. We claim: there is for every q ∈ B a continuous semialgebraic path
γ : [0, 1] → A with γ(0) = p, γ(1) = q, and γ([0, 1]) ⊆ B. To see this, let B(p) be
the set of all q ∈ B for which there is such a path. The sets B(p) as p ranges over
B form a partition of B, so it is enough to show that the B(p) are open in B, which
reduces to showing that B(p) is a neighborhood of p in B. The latter follows using
that B is open in the semialgebraic set A, and using [2, (III, 2.18)]. �

Corollary 8.7. If B is a block in Rm (of some dimension), A is a semialgebraic
subset of Rm with B ⊆ A, and φ : A→ Rn is a continuous semialgebraic map such
that φ(B) has more than one point, then φ(B) = φ(B)alg.

Proof. Use that the φ-image of a path γ as in Lemma 8.6 is a connected semialge-
braic subset of φ(B). �

The next result is basically a consequence of Theorem 8.4, as the proof will show.

Theorem 8.8. Given ε, there are a natural number N = N(X, d, ε) > 1, a definable
set Vj ⊆ (E × Rd × Fj) × Rn with definable Fj ⊆ Rmj , for j = 1, . . . , N , and a
constant c = c(X, d, ε), such that for j = 1, . . . , N and all (s, λ, t) ∈ E × Rd × Fj:

(i) Vj(s, λ, t) ⊆ X(s) and Vj(s, λ, t) is connected;
(ii) if dimVj(s, λ, t) > 1, then Vj(s, λ, t) ⊆ X(s)alg,

and such that for all T and (s, λ) ∈ E×Rd, the set X(s)λ(T ) is covered by at most
cT ε sections Vj(s, λ, t), (1 6 j 6 N, t ∈ Fj).

This yields a family version of Theorem 8.5 as follows. Let V1, . . . , VN and c be as
in Theorem 8.8. Then for all s ∈ E the definable set V (s) ⊆ Rn given by

V (s) :=
⋃
{Vj(s, λ, t) : 1 6 j 6 N, (λ, t) ∈ Rd × Fj , dimVj(s, λ, t) > 1}

is contained in X(s)alg and Nλ(X(s) \ V (s), T ) 6 cT ε for all T .

Proof. Let π : Rd × (Rd)n → Rn be given by π(λ, a1, . . . , an) = (λ · a1, . . . , λ · an),
where a1, . . . , an ∈ Rd. Set

X∗ := {(s, λ, a1, . . . , an) ∈ (E × Rd)× (Rd)n :
(
s, π(λ, a1, . . . , an)

)
∈ X},

viewed as a definable family of subsets of (Rd)n. Note that for s ∈ E and λ ∈ Rd,
(∗) π

(
{λ} ×X∗(s, λ)

)
⊆ X(s), π

(
{λ} ×X∗(s, λ)(Q, T )

)
= X(s)λ(T ).

We apply Theorem 8.4 to X∗ in the role of X. It gives N = N(X∗, ε) > 1, a block
family V ∗j ⊆ (E × Rd × Fj) × (Rd)n in (Rd)n = Rdn with definable Fj ⊆ Rmj , for
j = 1, . . . , N , and a constant c = c(X∗, ε) such that:

(i)∗ V ∗j (s, λ, t) ⊆ X∗(s, λ) for j = 1, . . . , N and (s, λ, t) in E × Rd × Fj ;
(ii)∗ for all T and all (s, λ) ∈ E × Rd, the set X∗(s, λ)(Q, T ) is covered by at

most cT ε sections V ∗j (s, λ, t), (1 6 j 6 N , t ∈ Fj).
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Now we set for j = 1, . . . , N ,

Vj := {
(
s, λ, t, π(λ, a)

)
∈ (E × Rd × Fj)× Rn : (s, λ, t, a) ∈ V ∗j },

so Vj(s, λ, t) = π
(
{λ} × V ∗j (s, λ, t)

)
for (s, λ, t) ∈ E × Rd × Fj . We now show

that V1, . . . , VN and c(X, d, ε) := c(X∗, ε) have the desired properties. Clause (i) is
satisfied using (i)∗ and (∗), and (ii) is satisfied in view of Corollary 8.7. The rest
follows from (ii)∗ and (∗). �

Extending the Counting Theorem to Algebraic Points. Throughout this
subsection we fix d > 1. Instead of rational points we now count algebraic points
whose coordinates are of degree at most d over Q. We define the corresponding
height of an algebraic number α ∈ R with [Q(α) : Q] 6 d by

Hpoly
d (α) := min{H(ξ) : ξ ∈ Qd, αd + ξ1α

d−1 + · · ·+ ξd = 0} ∈ N>1.

(For us this height is notationally more convenient than the height for real algebraic
numbers used by Pila in [P2]. The two heights are related as follows, where we use
an extra subscript P for the height in [P2]: for α ∈ R with [Q(α) : Q] 6 d,

Hpoly
P,d+1(α) 6 Hpoly

d (α) 6 Hpoly
P,d+1(α)2.

Thus the results below for our height also hold for the other height.)

We extend the above height to all α ∈ R by Hpoly
d (α) := ∞ if [Q(α) : Q] > d, and

to all points α = (α1, . . . , αn) ∈ Rn by Hpoly
d (α) := max{Hpoly

d (α1), . . . ,Hpoly
d (αn)}.

For Y ⊆ Rn we introduce its finite subsets Yd(T ) and their cardinalities:

Yd(T ) := {α ∈ Y : Hpoly
d (α) 6 T}, Nd(Y, T ) := #Yd(T ).

Theorem 8.9. Let Y ⊆ Rn be definable, and let ε be given. Then there is a
constant c = c(Y, d, ε) such that for all T ,

Nd(Y
tr, T ) 6 cT ε.

We shall use the following easy consequence of semialgebraic cell decomposition:

Lemma 8.10. Let An,d ⊆ Rn×d × Rn be the semialgebraic set

{(ξ, α) ∈ Rn×d × Rn : αdi + ξi1α
d−1
i + · · ·+ ξid = 0 for i = 1, . . . , n}.

Then we have a natural number L = L(n, d) > 1, a semialgebraic set Dl ⊆ Rn×d
with a semialgebraic continuous map φl : Dl → Rn, for l = 1, . . . , L, such that

An,d =
⋃L
l=1 graph(φl). It follows that for all α ∈ Rn with Hpoly

d (α) < ∞ there is

an l ∈ {1, . . . , L} and a ξ ∈ Dl such that φl(ξ) = α and H(ξ) = Hpoly
d (α).

Towards Theorem 8.9 we first prove something stronger:

Theorem 8.11. Let ε be given. Then there are N = N(X, d, ε) ∈ N>1, a definable
set Vj ⊆ (E × Fj)× Rn with definable Fj ⊆ Rmj , for j = 1, . . . , N , and a constant
c = c(X, d, ε), such that for j = 1, . . . , N and all (s, t) ∈ E × Fj:

(i) Vj(s, t) ⊆ X(s) and Vj(s, t) is connected;
(ii) if dimVj(s, t) > 1, then Vj(s, t) ⊆ X(s)alg,

and such that for all T and s ∈ E, the set X(s)d(T ) is covered by at most cT ε

sections Vj(s, t), (1 6 j 6 N, t ∈ Fj).
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Proof. Let π : Rn×d × Rn → Rn×d be the obvious projection map. Take L and
φ1 : D1 → Rn, . . . , φL : DL → Rn as in Lemma 8.10. Let l ∈ {1, . . . , L}. We set

Xl := {(s, ξ, α) ∈ E ×Dl × Rn : α ∈ X(s), φl(ξ) = α},
Yl := {(s, ξ) ∈ E ×Dl : ξ ∈ π

(
Xl(s)

)
} = {(s, ξ) ∈ E ×Dl : φl(ξ) ∈ X(s)},

so for s ∈ E we have φl
(
Yl(s)

)
⊆ X(s), and by Lemma 8.10, for all T ,

X(s)d(T ) =

L⋃
l=1

φl
(
Yl(s)(Q, T )

)
.

We now apply Theorem 8.4 to Yl in the role of X, and get Nl = Nl(Yl, ε) ∈ N>1,
a block family Vl,i ⊆ (E × Fl,i) × Rn×d in Rn×d with definable Fl,i ⊆ Rml,i , for
i = 1, . . . , Nl, and a constant cl = cl(Yl, ε) ∈ R> such that:

(i) Vl,i(s, t) ⊆ Yl(s) for i = 1, . . . , Nl and (s, t) in E × Fl,i;
(ii) for all T and all s ∈ E, the set Yl(s)(Q, T ) is covered by at most clT

ε blocks
Vl,i(s, t), (1 6 i 6 Nl, t ∈ Fl,i).

Set N := N1 + · · · + NL, and for 1 6 i 6 Nl and j = N1 + · · · + Nl−1 + i, set
Fj := Fl,i, and let Vj ⊆ (E × Fj)× Rn be the definable set given by

Vj(s, t) := φl
(
Vl,i(s, t)

)
, (s ∈ E, t ∈ Fj).

It is easily verified using Lemma 8.7 that V1, . . . , VN and c(X, d, ε) := c1 + · · ·+ cL
have the properties stated in the Theorem. �

Just as with Theorem 8.8 this leads to a family version of Theorem 8.9 as follows.
Let V1, . . . , VN and c be as in Theorem 8.11. Take the definable set V ⊆ E × Rn
such that for all s ∈ E,

V (s) :=
⋃
{Vj(s, t) : 1 6 j 6 N, t ∈ Fj , dimVj(s, t) > 1}.

Then for all s ∈ E and all T we have

V (s) ⊆ X(s)alg and Nd(X(s) \ V (s), T ) 6 cT ε.
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