
Discrete Applied Mathematics 283 (2020) 123–132

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

The complete set ofminimal simple graphs that support
unsatisfiable 2-CNFs
Vaibhav Karve, Anil N. Hirani ∗

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801,
United States of America

a r t i c l e i n f o

Article history:
Received 27 January 2019
Received in revised form 24 October 2019
Accepted 23 December 2019
Available online 20 January 2020

Keywords:
Boolean satisfiability
Conjunctive normal form
Propositional logic
Graph minors
Topological minors
Edge contraction
Subdivision

a b s t r a c t

A propositional logic sentence in conjunctive normal form that has clauses of length
at most two (a 2-CNF) can be associated with a multigraph in which the vertices
correspond to the variables and edges to clauses. We show that every 2-CNF that has
been reduced under the application of certain tautologies, is equisatisfiable to a 2-CNF
whose associated multigraph is, in fact, a simple graph. Our main result is a complete
characterization of graphs that can support unsatisfiable 2-CNF sentences. We show that
a simple graph can support an unsatisfiable reduced 2-CNF sentence if and only if it
contains any one of four specific small graphs as a topological minor. Equivalently, all
reduced 2-CNF sentences supported on a given simple graph are satisfiable if and only
if all subdivisions of those four graphs are forbidden as subgraphs of the original graph.

© 2019 Published by Elsevier B.V.

1. Introduction

Given a sentence in propositional logic, the satisfiability decision problem is to determine if there exists a truth
assignment for the variables that makes the sentence true. Let V be a countably infinite set of Boolean variables, ¬V
be the set { ¬x: x ∈ V } of negations, and let the symbols ⊤ and ⊥ be True and False values of variables. We define the
set of literals obtained from V to be the set V ∪ ¬V ∪ {⊤, ⊥}.

A Conjunctive Normal Form (CNF) on V is a conjunction of one or more clauses, where each clause is a disjunction of
literals. A CNF (or clause) is reduced if it is unchanged under application of all the tautologies listed below

x ∨ ⊤ = ⊤,
x ∨ ⊥ = x,

x ∧ ⊤ = x,
x ∧ ⊥ = ⊥,

x ∨ x = x,
x ∧ x = x.

x ∨ ¬x = ⊤,

It is a fact that every CNF (or clause) is logically equivalent to a reduced CNF (or clause). The length of a reduced clause
is the number of literals in the clause. For k ∈ N, a reduced CNF is a reduced k-CNF if all of its clauses have length at
most k. In particular, the CNFs ⊤ and ⊥ are k-CNFs for every k ∈ N. We will refer to the satisfiability decision problem
as SAT and the satisfiability problem for k-CNFs as k-SAT.

Instead of algorithmic issues our aim in this paper is to study the structure of unsatisfiable 2-CNF sentences in a
sense that will be made precise later. For completeness, here we briefly summarize the relevant fundamental algorithmic
results for satisfiability problems. The 2-SAT problem is in P. An O(n4) algorithm was given by Krom [9] and a linear-time

∗ Corresponding author.
E-mail addresses: vkarve2@illinois.edu (V. Karve), hirani@illinois.edu (A.N. Hirani).

https://doi.org/10.1016/j.dam.2019.12.017
0166-218X/© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.dam.2019.12.017
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2019.12.017&domain=pdf
mailto:vkarve2@illinois.edu
mailto:hirani@illinois.edu
https://doi.org/10.1016/j.dam.2019.12.017

124 V. Karve and A.N. Hirani / Discrete Applied Mathematics 283 (2020) 123–132

algorithm by Even, Itai and Shamir [6] and Aspvall, Plass and Tarjan [1]. All solutions of a given 2-CNF sentence can be
listed efficiently using an algorithm by Feder [7].

In contrast with the algorithmic tractability of 2-SAT, the SAT problem in general is NP-complete as was shown by
Cook and by Levin independently [5,10]. As part of the proof of the NP-completeness of SAT, they also proved that
every logical sentence can be rewritten as a CNF while changing its length by no more than a constant factor. Schaefer’s
dichotomy theorem states necessary and sufficient conditions under which a finite set S of relations over the Boolean
domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the
propositional variables [12]. Thus [12] gives a necessary and sufficient condition for SAT-type problems to be in P vs. NP.
This result can also be reformulated in terms of Boolean Constraint Satisfaction Problems (Boolean CSPs) [4] leading to a
more algebraic version of Schaefer’s dichotomy theorem as well as recent generalizations of the theorem to larger classes
of relations [3].

Our paper relates properties of certain graphs to satisfiability. An early connection between satisfiability and graphs
was in the proof of NP-completeness of various graph problems, such as the clique decision problem and the vertex
cover problem, by Karp [8]. One of the linear-time algorithms for 2-SAT [1] mentioned above also related graphs and
satisfiability in its use of strongly-connected graph components as a tool for deciding satisfiability, while [3] provides an
analog of Schaefer’s dichotomy result for the propositional logic of graphs instead of Boolean logic

We explore the structures of unsatisfiable 2-CNFs by relating reduced 2-CNFs to graphs and examining which graphs
can support unsatisfiable sentences. Given a 2-CNF, an associated multigraph can be created by treating the variables as
vertices and clauses as edges. Since multiple clauses may involve the same two variables, it is not immediate that it is
sufficient to consider graphs rather than multigraphs. That it indeed is so is the content of Section 4. In Section 5 we prove
results about the relation between graphs that support unsatisfiable sentences. Theorem 3 in that section shows that the
family of simple graphs that can support an unsatisfiable sentence is closed under graph homeomorphism while Remark 4
shows that a graph can support an unsatisfiable sentence if one of its subgraphs can. Theorem 6 shows that if a graph
can support an unsatisfiable sentence, then the graphs obtained by edge-contractions at edges not contained in triangles
can. Section 7 is about connectivity properties of graphs that we need to prove the main result. The main result of this
paper is Theorem 18 in which we give a complete characterization of graphs that can support unsatisfiable sentences.
This is given in the form of a finite set of obstructions to supporting only satisfiable sentences. In Section 9 we discuss our
conclusions as they relate to the computational complexity of searching for obstructions (forbidden topological minors)
and the possibilities for generalizing our result to 3-CNFs and their associated multi-hypergraphs.

2. Preliminaries

For a reduced CNF S and a variable v, we denote by S[v := ⊤] the reduced CNF obtained by

(a) setting all occurrences of v in S to ⊤,
(b) setting all occurrences of ¬v in S to ⊥, and
(c) reducing the CNF thus obtained, that is, applying all the tautologies listed in Section 1 to the CNF in order to obtain

a reduced CNF.

Similarly, the reduced CNF obtained by setting v to ⊥, setting ¬v to ⊤, and then performing the tautological reductions
is denoted by S[v := ⊥]. If we set multiple variables to true or false, we use the notation S[{a, b} := ⊤; {c, d} := ⊥] as
short-hand for S[a := ⊤][b := ⊤][c := ⊥][d := ⊥] and so on for variables a, b, c and d. Note that the order in which we
set variables to true or false is not important, as it yields logically equivalent results.

We recall some special types of CNFs. A reduced CNF S is true if S = ⊤, false if S = ⊥, and nontrivial if S is neither true
nor false. A reduced CNF S is satisfiable if there is a subset V1 of V such that S[V1 := ⊤; V − V1 := ⊥] is true. A reduced CNF
is unsatisfiable if it is not satisfiable. Two reduced CNFs, S and S ′ are equisatisfiable, denoted by S ∼ S ′, if either both are
satisfiable or both are unsatisfiable. We note that logical equivalence is a more stringent condition than equisatisfaction.

3. Graph associated with a reduced CNF

We define an operation | · | : V ∪ ¬V → V as |x| = |¬x| = x, for every x ∈ V . Let α =
⋁k

i=1 ai, where k ∈ N
and ai ∈ V ∪ ¬V for i ∈ {1, . . . , k}. We extend the domain of the operation | · | to include clauses like α by
defining |α| = {|ai| : i ∈ {1, . . . , k}}.

Let S be a nontrivial reduced 2-CNF. We can write S =
⋀n

j=1 αj, where n ∈ N and each αj is a clause of length 1 or 2.
To S we associate a multigraph MG(S) having vertex set

⋃n
j=1|αj| and having an edge |αj| for every j ∈ {1, . . . , n}. Note

that a variable x and its negation ¬x are both represented by a single vertex (also labeled x) in MG(S). The 2-CNF S
being nontrivial guarantees that MG(S) is a nonempty multigraph. S being reduced ensures that there are no self-loops
in MG(S), since self-loops can only occur due to clauses (x ∨ ¬x) and (x ∨ x).

If a multigraph G is the associated multigraph of a 2-CNF S, then we say S is supported on G. A nontrivial 2-CNF S is
simple if its associated graph is simple. In such a case, we drop the prefix ‘‘multi-’’ and denote the associated graph MG(S)
simply by G(S). We denote by U the following family of graphs

U = { G(S): S is an unsatisfiable simple 2-CNF }.

V. Karve and A.N. Hirani / Discrete Applied Mathematics 283 (2020) 123–132 125

Our aim in this paper is to characterize the elements of U . First, we note that U is nonempty since

S = (a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ c) ∧ (¬c ∨ d) ∧ (¬d ∨ e) ∧ (¬d ∨ f) ∧ (¬e ∨ ¬f),

is an unsatisfiable simple 2-CNF supported on the following graph.

4. Simple CNFs suffice

In this section, we show that every nontrivial reduced 2-CNF is equisatisfiable to a simple 2-CNF. Thus when studying
satisfiability of 2-CNFs we only need to consider those that are simple.

First, we make the observation that for any a ∈ V , there are at most two length 1 clauses, namely a and ¬a. Such
clauses involving a single variable a (or its negation) will be referred to as (a)-clauses. For every a, b ∈ V , there are at
most four length 2 clauses, namely (a∨b), (a∨¬b), (¬a∨b) and (¬a∨¬b). Consequently, for any reduced 2-CNF S, edges
in MG(S) have a maximum multiplicity of 4. Such clauses involving both a and b (or their negations) will be referred to
as (a, b)-clauses.

Remark 1. Given a reduced CNF S and a, b ∈ V , we make the following observations:

(a) S ∧ a ∧ ¬a is unsatisfiable.
(b) S ∧ a ∼ S[a := ⊤].
(c) S ∧ (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) is unsatisfiable.
(d) S ∧ (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ b) ∼ S[{a, b} := ⊤].
(e) S ∧ (a ∨ b) ∧ (a ∨ ¬b) ∼ S[a := ⊤].
(f) S ∧ (a ∨ b) ∧ (¬a ∨ ¬b) ∼ S[b := ¬a]

The proofs of these statements are elementary. For example, to prove (f)), we note that any truth assignment satisfying
the CNF must assign a and b to opposite truth values in order to satisfy the two (a, b)-clauses. Thus, such a truth assignment
must also satisfy S[b := ¬a]. Conversely, any truth assignment satisfying S[b := ¬a], can be turned into a truth assignment
that satisfies the CNF by additionally setting b to the negation of the assignment for a.

Lemma 2. Let S be a reduced 2-CNF. There exists a reduced 2-CNF S ′, such that S ′ is equisatisfiable to S, and is either trivial
or simple.

Proof. We can construct S ′ from S by repeatedly applying a series of steps. For any variable a, if S has an (a)-clause, then
by Remark 1, the CNF S is either trivially false or is equisatisfiable to a reduced 2-CNF without any (a)-clauses. By this
reasoning, we can eliminate all (a)-clauses from S.

For every (a, b)-clause that appears more than once in S, by exchanging a with ¬a and/or b with ¬b and/or a with
b, we can ensure that S is in one of the forms that appear on the left side of Remark 1 (c))–(f)). Using Remark 1, we
can therefore reduce S to an equisatisfiable reduced 2-CNF not containing any (a, b)-clauses. Repeating this process for
every variable pair whose clauses appear more than once in S, and after reapplying the previous steps and any further
tautological reductions, we can obtain S ′ such that S ′ is either trivial or simple. □

Throughout the remainder of this paper, when we refer to graphs, we will always mean simple graphs unless stated
otherwise.

5. U Is closed under graph homeomorphism

In this section we look at three different graph operations – subgraphing, subdivision and edge-contraction at edges not
contained in triangles – and study whether U is closed under these operations. The definitions for these graph operations
are standard and can be found in any graph text on graph theory, for example [2].

A graph G is a subgraph of a graph H if both the vertex set and edge set of G are subsets of the vertex and edge sets of H .
We will show that if a subgraph of a graph is in U , then the graph itself must also be in U . Edge-contraction at an edge (u, v)
of a graph results in a graph in which the vertices u and v are merged into a single new vertex w and all edges incident
on u or v are now incident on w. In order to avoid the creation of multi-edges we restrict the edge-contraction operation
to edges not contained in triangles. This is a necessary restriction and without it one would lose the correspondence
between simple 2-CNFs and their associated simple graphs. We will show that if G can be obtained from a graph in U via
a series of edge-contractions at edges not contained in triangles, then G must be in U .

A subdivision of an edge (u, v) in a graph yields a graph containing one new vertex w, and with an edge set
replacing (u, v) by two new edges (u, w) and (w, v). A subdivision of a graph G is a graph resulting from the subdivision

126 V. Karve and A.N. Hirani / Discrete Applied Mathematics 283 (2020) 123–132

of edges in G. Two graphs are homeomorphic if they are subdivisions of the same graph. We will show that if two graphs
are homeomorphic, then either both are in U or neither is.

A graph G is a topological minor of a graph H if a subdivision of G is a subgraph of H . We note that the relation of being
a subgraph, a subdivision, or a topological minor, are each reflexive as well as anti-symmetric.

We will produce a complete list of graphs whose appearance as a topological minor is an obstruction to satisfiability
of 2-CNFs. It is possible to embed simple graphs into R3 (by mapping distinct vertices to distinct points) and to allow them
to inherit the subspace topology of R3. Once embedded, homeomorphic graphs are also homeomorphic in the topological
sense and topological graph minors are simply topological subspaces [2]. In that sense, the ability to support unsatisfiable
sentences is a topological property of graphs.

Theorem 3. If simple graphs G and H are homeomorphic, then G ∈ U if and only if H ∈ U .

Proof. Since G and H are homeomorphic graphs, there exists a graph K such that both G and H are subdivisions of K . It
is enough to prove that K ∈ U if and only if G ∈ U . In fact, it is enough to prove that K ∈ U if and only if G′

∈ U , where G′

is a graph obtained via a single subdivision at an arbitrary edge (u, v) in K . We denote by w the new vertex in G′ created
by the subdivision.

Let SK be a reduced 2-CNF supported on K . Without loss of generality, we can write SK = S ∧ (u ∨ v), where S is
a simple 2-CNF not containing (u, v)-clauses. We then define a simple 2-CNF SG′ = S ∧ (u ∨ w) ∧ (¬w ∨ v), supported
on G′ and observe that any truth assignment satisfying SG′ must also satisfy SK because,

SG′ ∼ (SG′ [w := ⊤]) ∨ (SG′ [w := ⊥]) = (S ∧ v) ∨ (S ∧ u) = SK .

Hence, if K ∈ U , then G′
∈ U . For the converse, we can write without loss of generality that any 2-CNF supported on G′

has the form

SG′ = S ∧ (u ∨ w) ∧ (w ∨ v) or SG′ = S ∧ (u ∨ w) ∧ (¬w ∨ v).

In both cases, we have SG′ ∼ S ∧ (u ∨ v) and hence we can conclude that G′
∈ U implies K ∈ U . □

In view of the theorem we just proved, it is natural to attempt a classification of all members of U up to homeomor-
phism. However, we observe that there are infinitely many graphs in U even up to homeomorphism. Given below is a
(non-exhaustive) infinite list of graphs in U , none of which are homeomorphic to each other.

. . .

Remark 4. If G and H are simple graphs such that G is a subgraph of H , then we note that G ∈ U implies H ∈ U because
we can simply add clauses to an unsatisfiable CNF while preserving its unsatisfiability.

We note that the converse of this theorem is not true, that is, there exist graphs G /∈ U and H ∈ U such that G is a
subgraph of H . For example, the triangle graph is not in U (as shown in Remark 7) but ∈ U (as shown in the proof
of Lemma 16).

Corollary 5. Let G be a topological minor of a simple graph H. If G ∈ U , then H ∈ U .

Proof. By definition of topological minors, some subdivision G′ of G is a subgraph of H . Since G ∈ U , we conclude that
G′

∈ U from Theorem 3. By Remark 4, we conclude H ∈ U . □

We note here that the converse of Corollary 5 is not true for the same reason that the converse of Remark 4 is not.
Corollary 5 motivates the following definition — a graph G is a minimal unsatisfiability graph if both of the following
conditions hold

(a) G ∈ U ,
(b) for every proper topological minor G′ of G, we have that G′ /∈ U .

Furthermore, a set M of minimal unsatisfiability graphs is complete if every graph in U has a topological minor in M .
Once we know that minimal unsatisfiability graphs exist, we can form a set M by constructing the union of all sets of

minimal unsatisfiability graphs. This set is complete because each graph in U will have some element of M as a topological
minor — if not we simply add to M a minimal unsatisfiability graph that is a topological minor of this graph. Further, such
a complete set must be unique because if not, then there is some minimal unsatisfiability graph G in complete set M ′ that
is not in M . This would result in G having a proper topological minor in U , violating the minimality of G. After proving the
following result about the relation between edge-contraction and graphs in U , the remainder of this paper is dedicated
to finding this unique complete set of minimal unsatisfiability graphs.

V. Karve and A.N. Hirani / Discrete Applied Mathematics 283 (2020) 123–132 127

Theorem 6. Let G and H be simple graphs such that G can be obtained via a series of edge-contractions at edges of H not
contained in triangles. If H ∈ U , then G ∈ U .

Proof. If is enough to prove the theorem for the case when G can be obtained from H via a single edge-contraction, say
at the edge (u, v) not contained in any triangles in H . We label the new vertex in G formed by the merger of u and v
by w.

Suppose that H ∈ U . Then, there exists an unsatisfiable simple 2-CNF SH , supported on H . Without loss of generality,
we can write

SH = S1 ∧ (u ∨ v)

where S1 is a simple 2-CNF not containing any (u, v)-clauses. If SH is not in this form, we can exchange u with ¬u and/or v
with ¬v to make the (u, v)-clause in SH positive in both variables.

One can further factor S1 such that

SH = S2 ∧

(⋀
a∈A

a ∨ u

)
∧

(⋀
b∈B

b ∨ ¬u

)
∧ (u ∨ v),

where S2 is a simple 2-CNF not containing any clauses incident on the vertex u, and the sets A and B are disjoint subsets
of (V ∪ ¬V) − {u, ¬u}. The sets A and B are disjoint because SH is a simple 2-CNF.

Next, we factor S2 such that

SH = S3 ∧

(⋀
a∈A

a ∨ u

)
∧

(⋀
b∈B

b ∨ ¬u

)
∧

(⋀
c∈C

c ∨ v

)
∧

(⋀
d∈D

d ∨ ¬v

)
∧ (u ∨ v),

where S3 is a simple 2-CNF not containing any clauses incident on vertices u or v, and the sets A, B, C,D are pairwise-
disjoint subsets of (V ∪ ¬V)−{u, ¬u, v,¬v}. The sets C and D are disjoint because SH is a simple 2-CNF. The sets A and C
are disjoint since the edge (u, v) is not contained in a triangle. Disjointness of other pairs of sets follows similarly.

We then choose

SG = S ∧

(⋀
x∈A∪D

x ∨ w

)
∧

⎛⎝ ⋀
y∈B∪C

y ∨ ¬w

⎞⎠ ,

and note that SG is a simple 2-CNF supported on G. The pairs of sets (A,D) and (B, C) being disjoint imply that no clauses
are lost in the process of edge-contraction. The pairs (A, B), (A, C), (B,D) and (C,D) being disjoint imply that SG is simple.

We prove that SG is unsatisfiable by showing that from any truth assignment that satisfies SG, we can obtain a truth
assignment satisfying SH , leading to a contradiction.

Given a truth assignment for SG, we can extend it to a truth assignment for SH by setting [u := w] and [v := ¬w]. We
have

SH [u := w][v := ¬w] = S ∧

(⋀
x∈A∪D

x ∨ w

)
∧

⎛⎝ ⋀
y∈B∪C

y ∨ ¬w

⎞⎠ = SG,

is satisfiable. This contradicts the unsatisfiability of SH . We conclude that SG is unsatisfiable, and hence that G ∈ U . □

The converse of this theorem is not true, that is, there does exist a graph G ∈ U that can be obtained via
edge-contractions of a graph H /∈ U at edges not contained in triangles of H . For example, consider the graphs G =

and H = . The graph G is in U (as shown in Lemma 16) and can be obtained from an edge-contraction from H .
However, the graph H is not in U (implied by Theorem 6 and Lemma 8 when combined with the fact that H can be
reduced to K4 − e via other edge-contractions).

6. Graph families that are not in U

Remark 7. We observe that the cycle graph Cn is not in U for any n ≥ 3. As proof, we note that C3 /∈ U since we can
simply enumerate all CNFs supported on C3 and check that each CNF is satisfiable. The graph Cn is homeomorphic to C3
for every n ≥ 3. and Theorem 3 thus implies that Cn /∈ U .

Lemma 8. Let K4 denote the complete graph on four vertices. Let K4 − e denote the graph obtained by deleting a single edge e
from K4. The graph K4 − e is not in U .

Proof. We enumerate the vertex set of K4 as {a, b, c, d}. Let e denote the edge (c, d) ∈ K4. Every 2-CNF S supported
on K4 − e can be written either in the form

S = (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (b, c)-clause ∧ (b, d)-clause, or

128 V. Karve and A.N. Hirani / Discrete Applied Mathematics 283 (2020) 123–132

S = (a ∨ b) ∧ (a ∨ c) ∧ (¬a ∨ d) ∧ (b, c)-clause ∧ (b, d)-clause.

If S is not already in the desired form, then we can interchange each variable with its negation till it is.
In the first case, by setting [a := ⊤] we obtain

S[a := ⊤] = (b, c)-clause ∧ (b, d)-clause.

This can be satisfied by making appropriate assignments for c and d so that they satisfy each of the clauses. In the second
case, we can set [a := ⊤] to obtain

S[a := ⊤] = d ∧ (b, c)-clause ∧ (b, d)-clause.

This resulting CNF can be satisfied by setting [d := ⊤], by choosing an assignment for b that would satisfy the (b, d)-clause
and by then choosing an assignment for c that would satisfy the (b, c)-clause. We conclude that S is always satisfiable,
and therefore, the graph K4 − e is not in U . □

Remark 9. We observe that tree graphs are not in U because every tree graph can be reduced via edge-contractions to
a single-vertex graph, which is clearly not in U .

7. Structure of graphs with two or three cycles

In this section we prove four lemmas about the structure of graphs that have either two or three cycles. These structural
results are needed for proving the results in Section 8, including the main result of this paper (Theorem 18).

Lemma 10. Every connected simple graph having two copies of C3 as subgraphs has one of the following three graphs as a
topological minor.

p-configuration v-configuration e-configuration
(K4 − e)

Remark 11. For convenience, we label the three graphs as the p-configuration (p stands for path), the v-configuration (v
stands for vertex) and e-configuration (e stands for edge) respectively. The two copies of C3 have been filled in for easy
visual identification.

Proof. We construct this list of topological minors from the bottom up. Two copies of C3 can be put together to create a
connected simple graph in three ways

(a) the two copies of C3 are disjoint,
(b) they share one vertex,
(c) they share two vertices (that is, they share an edge).

In the first case, since the graph is connected, the two copies of C3 must be connected by one or more paths. Hence, the
graph has the p-configuration as a topological minor. In the second case, the graph has the v-configuration as a subgraph
and therefore, also as a topological minor. Similarly, in the third case, the graph has the e-configuration as a subgraph
and therefore, also as topological minor. □

Lemma 12. Every connected simple graph having at least two cycles has one of the three graphs in Lemma 10 as a topological
minor.

Proof. Let G be a connected simple graph with two or more cycles. If any two cycles share one or more edges, then K4−e is
a topological minor of G. If no pair of cycles shares any edges, but at least one pair shares a vertex, then the v-configuration
is a topological minor of G. If no pair of cycles shares an edge or a vertex, then using the connectedness of G, we infer that
there must be a path connecting vertices in every pair of cycles. Thus, in this case, the p-configuration is a topological
minor of G. □

Lemma 13. Every connected simple graph having three or more copies of C3 as subgraphs has one of the following 15 graphs
as a topological minor.

V. Karve and A.N. Hirani / Discrete Applied Mathematics 283 (2020) 123–132 129

ppp-config. #1 ppe-config. #2 vve-config. #1

ppp-config. #2 pvv-configuration vve-config. #2

ppv-config. #1 pve-configuration vee-configuration

ppv-config. #2 vvv-config. #1 eee-config. #1

ppe-config. #1 vvv-config. #2 eee-config. #2

Remark 14. Labels for each of the 15 graphs (like ppp-config. #1) are explained as part of the proof. The three copies
of C3 that we use for this labeling have been filled in for the sake of easy visual identification.

Proof. We arrive at this list of topological minors by constructing them from the bottom up. From the proof of Lemma 10,
we know that every pair of C3 can be joined in one of three ways. Graphs with three or more copies of C3 will have at
least

(3
2

)
= 3 distinct pairs of C3.

To enumerate all possible joinings of these three pairs of C3, we form all three-letter words formed using the
letters {p, v, e}, with repetition allowed, but order being irrelevant. For example, the word ppe would correspond to the
family of graphs where the two pairs of C3 are joined via the p-configuration, while the third pair of C3 is joined via
the e-configuration. We also note that some words correspond to multiple non-isomorphic configurations. We analyze
each case separately below

(a) ppp-configuration. After joining the first pair of C3 in a p-configuration, the third copy of C3 can be added in
two different non-isomorphic ways (such that the first and third, as well as the second and third are joined via
the p-configuration). Thus, we obtain only two configurations in this case — ppp-config. #1 and ppp-config. #2.

(b) ppv-configuration. After joining the first pair of C3 in a v-configuration, the third copy of C3 can be added
in two non-isomorphic ways. Thus, we obtain only two configurations in this case, namely ppv-config. #1
and ppv-config. #2.

(c) ppe-configuration. After joining the first pair of C3 in an e-configuration, the third copy of C3 can be added
in two non-isomorphic ways. Thus, we obtain only two configurations in this case, namely ppe-config. #1
and ppe-config. #2.

(d) pvv-configuration. After joining the first pair of C3 in a v-configuration, the third copy of C3 can be added in only
one way. Thus, we obtain only one configurations in this case, namely the pvv-configuration.

(e) pve-configuration. After joining the first pair of C3 in an e-configuration, the third copy of C3 can added in only one
way. Thus, we obtain only one configurations in this case, namely the pve-configuration.

(f) pee-configuration. After joining the first pair of C3 in an e-configuration, the third copy of C3 cannot be added in
a way that it is shares an edge with the first and is connected by a path to the second. Thus, we do not obtain
configurations in this case.

(g) vvv-configuration. After joining the first pair of C3 in an v-configuration, the third copy of C3 can be added
in two non-isomorphic ways. Thus, we obtain only two configurations in this case, namely vvv-config. #1
and vvv-config. #2.

130 V. Karve and A.N. Hirani / Discrete Applied Mathematics 283 (2020) 123–132

(h) vve-configuration. After joining the first pair of C3 in an e-configuration, the third copy of C3 can be added
in two non-isomorphic ways. Thus, we obtain only two configurations in this case, namely vve-config. #1
and vve-config. #2.

(i) vee-configuration. After joining the first pair of C3 in an e-configuration, the third copy of C3 can added in only one
way. Thus, we obtain only one configurations in this case, namely the vee-configuration.

(j) eee-configuration. After joining the first pair of C3 in an e-configuration, the third copy of C3 can be added
in two non-isomorphic ways. Thus, we obtain only two configurations in this case, namely eee-config. #1 and
eee-config. #2. □

Lemma 15. Every connected simple graph having three or more cycles has one of the following four graphs as a topological
minor.

v-configuration p-configuration eee-config. #1 eee-config. #2
(K4) (K1,1,3)

Proof. It is enough to show that every graph listed in Lemma 13 has one of the four graphs listed above as a topological
minor. The p-config. is a subgraph of both the ppp-configs., both the ppv-configs., both ppe-configs., the pvv-config., and
the pve-config. Of the remaining configurations, both the vvv-configs., both the vve-configs., and the vee-config. contain
the v-config. as a subgraph.

The first eee-configuration is isomorphic to K4 while the second is isomorphic to K1,1,3. Hence, all 15 configurations
have at least one of the four graphs listed above as a topological minor. □

8. The complete set of minimal unsatisfiability graphs

We note that a simple graph G is in U if and only if some connected component of G is in U . We proceed to make
some more observations about the graph-family U .

Lemma 16. The four graphs in Lemma 15 are minimal unsatisfiability graphs.

Proof. The following unsatisfiable 2-CNFs

S1 = (a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ c) ∧ (¬c ∨ d) ∧ (¬c ∨ e) ∧ (¬d ∨ ¬e),
S2 = (a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ c) ∧ (¬c ∨ d) ∧ (¬d ∨ e) ∧ (¬d ∨ f) ∧ (¬e ∨ ¬f),
S3 = (a ∨ b) ∧ (a ∨ c) ∧ (¬a ∨ d) ∧ (¬b ∨ ¬c) ∧ (b ∨ ¬d) ∧ (c ∨ ¬d) and
S4 = (a ∨ b) ∧ (¬a ∨ d) ∧ (b ∨ c) ∧ (¬b ∨ d) ∧ (¬b ∨ e) ∧ (¬c ∨ ¬d) ∧ (¬d ∨ ¬e),

have as their associated graphs the four graphs listed in Lemma 15. Hence these graphs are in U . Since the four listed
graphs are not subdivisions of other graphs, to prove minimality, it suffices to show that every proper subgraph of these
graphs is not in U .

Every proper subgraph of the v-configuration is either a subgraph of or . Both subgraphs can be reduced
via edge-contractions to C3. By Remark 7 and Theorem 6, we conclude that neither subgraph is in U .

Every proper subgraph of the p-configuration is either a subgraph of , , or . The first two
subgraphs can be reduced via edge-contractions to proper subgraphs of the v-configuration and thus by Theorem 6, we
conclude they are not in U . The third subgraph is not in U because of Remark 7.

Since every proper subgraph of K4 is also a subgraph of K4 − e, using Remark 4 and Lemma 8, we conclude that none
of the proper subgraphs of K4 are in U .

Every proper subgraph of K1,1,3 is either a subgraph of or K2,3 (), both of which can be reduced via
edge-contractions to K4 − e. We conclude that none of the proper subgraphs of K1,1,3 are in U . □

Corollary 17. Every connected simple graph having three or more cycles is in U .

Proof. From Lemma 15 we know that every connected simple graph having three or more cycles has one of the four
graphs listed in that lemma as a topological minor. Since we proved in Lemma 16 that all four of these graphs are in U ,
the result follows from Corollary 5. □

V. Karve and A.N. Hirani / Discrete Applied Mathematics 283 (2020) 123–132 131

Theorem 18. A simple graph G can support an unsatisfiable 2-CNF if and only if G contains at least one of the following four
graphs as a topological minor:

Proof. The four graphs belong to U , as shown in Lemma 16. The ‘‘if’’ part of the theorem then follows from Corollary 5.
To prove the converse, we assume that G ∈ U . We can also assume that G is connected (else simply restrict to the

connected component of G that is in U) and has minimum degree greater than 1 (else simply perform edge-contractions
to get rid of pendant edges).

If G has three or more cycles, then the result follows from Lemma 15. If G is connected and has two cycles, then by
Lemma 12 it follows that either G has the first graph, the second graph, or K4 − e as a topological minor. This last case
is in fact not possible because we note that a graph with two cycles having K4 − e as a topological minor can in fact be
reduced via edge-contractions to K4−e. Using Lemma 8 and the contrapositive of Theorem 6, this would imply that G /∈ U ,
a contradiction.

If G has only one cycle, then G can be reduced to C3 by edge-contractions. However, we can derive contradicting results
from Remark 7 and Theorem 6, showing that in fact G cannot have only one cycle.

Finally, if G has no cycles, then G is a tree graph. We know from Remark 9 that tree graphs are not in U , which is a
contradiction. Thus G cannot have zero cycles. □

Remark 19. The four graphs in Theorem 18 can be embedded into R2 (as drawn) and are homeomorphic to the
following 1-dimensional cell complexes respectively

One can immediately identify unsatisfiable sentences supported on these cell complexes. For the first one, this is the
(unreduced) 2-CNF (x ∨ x) ∧ (¬x ∨ ¬x). For the second cell complex, the (unreduced) 2-CNF (x ∨ x) ∧ (¬x ∨ ¬y) ∧ (y ∨ y)
is unsatisfiable. For the third, the cell complex is the same as K4 and any unsatisfiable 2-CNF supported on K4 will suffice.
For the fourth cell complex, the (unreduced) 2-CNF (x ∨ y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y) is unsatisfiable.

9. Conclusion

In our main result, Theorem 18, we showed that given a simple graph, all reduced sentences supported on it will be
satisfiable if and only if four specific graphs are forbidden as topological minors of the original graph.

The decision problem of determining if a fixed graph is present as a topological minor can actually be resolved in
polynomial time as a consequence of the graph minor theorem [11]. Since our set of forbidden topological minors is
finite we can therefore guarantee that the task of searching for them can also be accomplished in polynomial time.

We emphasize however that as we have stated earlier, our goal in this paper is the characterization of unsatisfiable
reduced 2-CNFs as opposed to questions of algorithmic efficiency for solving the satisfiability problem for 2-CNFs for which
efficient algorithms already exist. We hope that the techniques developed in this paper when generalized to hypergraphs
might shed light on the structure of unsatisfiable 3-CNFs.

Generalizing to 3-CNFs poses several new challenges. For example, the associated graphs for 3-CNFs are in fact multi-
hypergraphs. Simple hypergraphs (without edge multiplicities) do not suffice. This also increases the number of cases that
need to be analyzed. Furthermore, there are various choices when generalizing graph operations like edge-subdivision and
edge-contraction to hypergraphs.

Acknowledgments

The authors thank Yuliy Baryshnikov for suggesting the problem of studying satisfiability from the viewpoint of the
underlying structure of the sentences and for early discussions on the subject. This work was funded in part by Campus
Research Board Award RB19150 from the University of Illinois at Urbana-Champaign, United States of America.

References

[1] B. Aspvall, M.F. Plass, R.E. Tarjan, A linear-time algorithm for testing the truth of certain quantified boolean formulas, Inform. Process. Lett. 8
(3) (1979) 121–123, http://dx.doi.org/10.1016/0020-0190(79)90002-4.

[2] L.W. Beineke, R.J. Wilson, J.L. Gross, T.W. Tucker, Topics in Topological Graph Theory, Cambridge University Press Cambridge, 2009.
[3] M. Bodirsky, M. Pinsker, Schaefer’s theorem for graphs, CoRR abs/1011.2894 (2010) arXiv:1011.2894.
[4] H. Chen, A rendezvous of logic, complexity, and algebra, ACM Comput. Surv. 42 (1) (2009) 2:1–2:32, http://dx.doi.org/10.1145/1592451.1592453.

http://dx.doi.org/10.1016/0020-0190(79)90002-4
http://refhub.elsevier.com/S0166-218X(19)30560-8/sb2
http://arxiv.org/abs/1011.2894
http://dx.doi.org/10.1145/1592451.1592453

132 V. Karve and A.N. Hirani / Discrete Applied Mathematics 283 (2020) 123–132

[5] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC
’71, ACM, New York, NY, USA, 1971, pp. 151–158, http://dx.doi.org/10.1145/800157.805047.

[6] S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicommodity flow problems, SIAM J. Comput. 5 (4) (1976) 691–703,
http://dx.doi.org/10.1137/0205048.

[7] T. Feder, Network flow and 2-satisfiability, Algorithmica 11 (3) (1994) 291–319, http://dx.doi.org/10.1007/BF01240738.
[8] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, Springer, 1972, pp. 85–103.
[9] M.R. Krom, The decision problem for a class of first-order formulas in which all disjunctions are binary, Math. Logic Quart. 13 (1–2) (1967)

15–20, http://dx.doi.org/10.1002/malq.19670130104.
[10] L.A. Levin, Universal enumeration problems, Problemy Peredači Informacii 9 (3) (1973) 115–116.
[11] N. Robertson, P. Seymour, Graph minors. XIII. the disjoint paths problem, J. Combin. Theory Ser. B 63 (1) (1995) 65–110, http://dx.doi.org/10.

1006/jctb.1995.1006.
[12] T.J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC

’78, ACM, New York, NY, USA, 1978, pp. 216–226, http://dx.doi.org/10.1145/800133.804350.

http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1137/0205048
http://dx.doi.org/10.1007/BF01240738
http://refhub.elsevier.com/S0166-218X(19)30560-8/sb8
http://dx.doi.org/10.1002/malq.19670130104
http://refhub.elsevier.com/S0166-218X(19)30560-8/sb10
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1145/800133.804350

	The complete set of minimal simple graphs that support unsatisfiable 2-CNFs
	Introduction
	Preliminaries
	Graph associated with a reduced CNF
	Simple CNFs suffice
	 Is closed under graph homeomorphism
	Graph families that are not in
	Structure of graphs with two or three cycles
	The complete set of minimal unsatisfiability graphs
	Conclusion
	Acknowledgments
	References

