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ABSTRACT
In recent work, Wang and Tener defined a class of “extremal” vertex operator algebras (VOAs), consisting of those with at least two simple
modules and conformal dimensions as large as possible for the central charge. In this article, we show that there are exactly 15 character
vectors of extremal VOAs with two simple modules. All but one of the 15 character vectors are realized by a previously known VOA. The last
character vector is realized by a new VOA with central charge 33.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121446

I. INTRODUCTION
In 1988, a foundational article of Mathur, Mukhi, and Sen1 pioneered an approach for the classification of rational chiral conformal

field theories (CFTs). They studied the graded dimension functions, or characters, of CFTs by showing that they satisfied what are now called
modular linear differential equations (MLDEs). The classification of CFTs by their characters, via MLDEs and other methods, has continued
over the last two decades, and in recent years, there has been significant activity surrounding the classification of characters of chiral CFTs
with two characters.

We study a mathematical version of this classification problem. We take vertex operator algebras (VOAs) as a mathematical model for
chiral CFTs, and for a sufficiently nice (“strongly rational”) vertex operator algebra V of central charge c, we consider its representation
category C = Rep(V), which is a modular tensor category (MTC).2 One can recover the equivalence class of the central charge c mod 8 from
C, and motivated by this, we define an admissible genus to be a pair (C, c) consisting of a modular tensor category and a number c in the
appropriate class mod 8 (cf. Ref. 3). It is natural to approach the problem of classification of VOAs and their characters by restricting to
genera where both C and c are sufficiently small in an appropriate sense.

We will take the rank of an MTC (i.e., the number of simple objects) as our measure of its size. The smallest MTC is the trivial one, Vec,
and a genus (Vec, c) is admissible when c ≡ 0 mod 8. There are a total of three VOAs in the genera (Vec, 8) and (Vec, 16), arising from even
unimodular lattices of rank 8 and 16. The problem becomes interesting at (Vec, 24), where the classification of characters of VOAs can be read
off from Schellekens’s famous list4 (see also Ref. 5). The classification of VOAs in (Vec, 24) is almost complete, except that the uniqueness of
VOA(s) with the same character as the moonshine VOA has not been established. At (Vec, 32), the explicit classification problem of characters
is already intractable, even just for the simplest examples coming from even unimodular lattices.

This difficulty propagates to the study of genera (C, c) with c large. Indeed, for any fixed V ∈ (C, c) one obtains from every W ∈ (Vec, 32) a
new VOA V ⊗W ∈ (C, c + 32). Thus, if one wishes to consider classification problems for higher central charge and rank(C) > 1, it is necessary
to restrict to a class of VOAs that excludes many VOAs of the form V ⊗W. There is a natural notion of “primeness” that one could consider
in this context, but we will consider something slightly different.
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The twist of a simple module M ∈ Rep(V) is given by θM = e2πih, where h is the lowest conformal dimension of states in M. Thus for any
(hypothetical) VOA V ∈ (C, c), we can recover the conformal dimensions of simple objects, mod 1. Moreover, there is an a priori bound1,6 on
the conformal dimensions,

ℓ ∶= (
n
2
) +

nc
4
− 6

n−1

∑
j=0

hj ≥ 0, (1.1)

where V =M0, . . . , Mn−1 are a complete list of simple V modules (assumed here to have linearly independent characters) and hj is the lowest
conformal dimension of Mj. Moreover, ℓ is an integer. A strongly rational VOA V ∈ (C, c) with rank(C) > 1 is called extremal7 if ∑hj is as
large as possible for c in light of (1.1). This is analogous to the extremality condition introduced by Höhn for holomorphic VOAs (i.e., VOAs
V with Rep(V) = Vec).8 Since the hj are determined mod 1 by C, extremality is equivalent to the condition ℓ < 6.

The classification of (characters of) extremal non-holomorphic VOAs appears to be a tractable piece of the unrestricted general clas-
sification problem. In Ref. 7, it was demonstrated that if rank(C) is 2 or 3, then the characters of a corresponding VOA are determined by
its genus, and a list of potential character vectors was obtained up to central charge 48. In this article, we give a complete classification of
characters of extremal VOAs V with rank(Rep(V)) = 2, with no restriction on the central charge.

Main Theorem. There are exactly 15 character vectors of strongly rational extremal (i.e., ℓ < 6) VOAs with exactly two simple modules.
These characters are listed in Table V.

This theorem appears in the main body of the text as Theorem 3.13. Of the 15 character vectors in Table V, all but one are realized by the
previously known VOAs. The remaining case, corresponding to the genus (Semion, 33), is realized by a new VOA constructed in Sec. IV.

This article fits into a cluster of activity regarding the classification of VOAs with two simple modules (or, more generally, two characters).
Recently, Mason, Nagatomo, and Sakai9 used MLDEs to establish a classification result for VOAs with two simple modules satisfying certain
additional properties in the ℓ = 0 regime. Our results extend the Mason–Nagatomo–Sakai classification to the case ℓ < 6, although, in contrast,
we only consider the problem of classifying characters of VOAs. The exceptional c = 33 character vector has ℓ = 4 and thus did not appear in
earlier classifications.

The Mason–Nagatomo–Sakai classification builds on the work of Franc and Mason,10,11 which describes solutions to MLDEs in rank
2 in terms of hypergeometric series. In contrast, our approach is to use the general theory of vector-valued modular forms to derive an
explicit recurrence between potential character vectors in the genus (C, c) and those in (C, c ± 24). By studying the long-term behavior of this
recurrence, we are able to obtain effective bounds on the possible central charges of extremal VOAs. While we only consider the case of VOAs
with two simple modules in this article, our method does not rely on any special features of rank 2 MLDEs (such as a hypergeometric formula),
and in future work, we hope to apply the same techniques in higher rank. For this reason, we avoid any explicit use of the hypergeometric
series formulas.

Section III is an adaptation of the undergraduate thesis12 of Grady, which obtained a classification of characters for extremal VOAs with
two simple modules and which focused on the case c, h ≥ 0. Not long after the thesis was published online, an article (Ref. 13) in the physics
literature used MLDEs to obtain a classification similar to the one presented here, without having been aware of Ref. 12.

This article is organized as follows: In Sec. II, we review the classification of rank 2 modular tensor categories and modular data from
the perspective of VOAs. In Sec. III A, we review the tools from Ref. 14, which we will use to describe the character vectors of VOAs.
In Sec. III B, we derive a recurrence relation that describes how characteristic matrices change under the transformation c↦ c ± 24. In
Secs. III C and III D, we study the long-term behavior of this recurrence in the positive c and negative c situations, respectively, and in
Sec. III E, we put these tools together to obtain our main theorem. Section IV provides a construction of an extremal VOA in the genus
(Semion, 33). Finally, in the Appendix, we give tables of numerical data used in the proof of the main theorem, as well as all 15 extremal
characters in rank 2.

II. RANK 2 MODULAR TENSOR CATEGORIES
In this article, we will consider VOAs that are simple, of CFT type, self-dual, and regular (or equivalently, rational and C2-cofinite15). For

brevity, we will use the term strongly rational to describe such VOAs. We refer the reader to Refs. 15 and 16 for background on the adjectives
under consideration, but we will explain here the consequences that are relevant for our work.

A strongly rational VOA V possesses finitely many simple modules V =M0, M1, . . . , Mn. We denote the category of V-modules by
Rep(V) and write rank(Rep(V)) for the number of simple modules n + 1. We will assume throughout that every module Mj is self-dual, as it
simplifies the exposition and is satisfied in the rank 2 case.

We are primarily interested in the characters of V ,

chj(τ) = q−c/24
∞
∑
n=0

dim Mj(n + hj) qn+hj ,

where as usual q = e2πiτ , c is the central charge of V , hj is the smallest conformal dimension occurring in Mj, and Mj(n + hj) is the space of
states of conformal dimension n + hi. The foundational work of Zhu17 demonstrated that the characters chj define holomorphic functions on
the upper half-plane and that their span is invariant under the action of the modular group. Thus, if we set
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ch(τ) =
⎛
⎜
⎝

ch0
⋮

chn

⎞
⎟
⎠

,

there exists a representation ρV : PSL(2,Z)→ GL(n + 1,C) such that

ch(γ ⋅ τ) = ρV (γ)ch(τ) (2.1)

for all γ ∈ PSL(2,Z) (recall that we assumed each Mi to be self-dual). Here, γ ⋅ τ denotes the natural action of PSL(2,Z) on the upper half-plane.
By the work of Huang (Ref. 2, see also Ref. 18), Rep(V) is naturally a modular tensor category, and based on Huang’s work, Dong–Lin–

Ng19 showed that Zhu’s modular invariance is encoded by the S and T matrices of Rep(V) (see Ref. 20 for more details on the S and T matrices
of a modular tensor category). Recall that the normalization of S is only canonical up to a sign and that for each choice of S, the normalization

of T is only canonical up to a third root of unitary. By Theorem 3.10 of Ref. 19 (based on Ref. 2), we have that ρV(
0 −1
1 0 ) coincides with a

normalization of the categorical S matrix of Rep(V), and it is straightforward to check directly that

ρV(
1 1
0 1) = e−2πic/24(δj,ke2πihj )j,k. (2.2)

We now consider strongly rational VOAs V such that rank(Rep(V)) = 2. We will sometimes write h instead of h1 for the non-trivial
lowest conformal dimension, and similarly, we will sometimes write M instead of M1. The classification of modular tensor categories of rank
2 was obtained in Ref. 21, and the complete list of normalized S matrices is

±
1
√

2
(

1 ε
ε −1) and ±

1
√

2 + α
(

1 α
α −1), (2.3)

where ε2
= 1 and α2

= 1 + α. This list coincides with the complete list of S matrices for two-dimensional congruence representations of the
modular group earlier obtained by Mason (Ref. 6, Sec. 3).

Observe that

e2πic/24 chj(i) =
∞
∑
n=0

dim Mj(n + hj) e−2π(n+hj) > 0,

and thus the phase of chj(i) is independent of j (here, i is the imaginary unit). By (2.1), ρ( 0 −1
1 0 )ch(i) = ch(i), and thus ρ( 0 −1

1 0 ) fixes a vector

all of whose entries have the same phase. This observation allows us to refine (2.3) and conclude that if rank(Rep(V)) = 2, then ρ( 0 −1
1 0 )must

be one of
1
√

2
(

1 1
1 −1),

1
√

2
(
−1 1

1 1),
1

√
2 + φ

(
1 φ
φ −1),

1
√

3 − φ
(
−1 φ − 1

φ − 1 1 ), (2.4)

where we use positive square roots and φ = 1+
√

5
2 is the golden ratio.

By the classification of Ref. 21, there are exactly two modular tensor categories realizing each of (2.4) as a normalization of its S matrix,
and these two are related by a reversal of the braiding. Fix one of these eight modular tensor categories C and its normalized S-matrix from
(2.2). We wish to see how much information about a hypothetical V with Rep(V) = C we may recover. By definition, the non-normalized T
matrix of C is the diagonal matrix e2πihj δj,k, and thus the equivalence class of h mod 1 is determined by C. Observe that if (S, T) are generators
of a representation of PSL(2,Z) then (S, ζT) again generate a representation only if ζ3

= 1, and thus from (2.2) we can see that c mod 8 is
determined by C as well.

We summarize the eight cases in Table I. Each row corresponds to a modular tensor category, giving its normalized S matrix from (2.4),
the equivalence classes of central charge and minimal conformal weight of a hypothetical VOA realization, as well as a familiar name for the
category and a VOA realizing the category, where appropriate/known.

The genus of a strongly rational VOA V is the pair (Rep(V), c). In Ref. 7, Tener and Wang defined an extremal (non-holomorphic) VOA
to be the one with rank(Rep(V)) > 1 such that the minimal conformal weights hj were as large as possible in light of a certain a priori bound1,6

(see Sec. 2.2 of Ref. 7 for more details). When rank(Rep(V)) = 2, then V is extremal when

0 ≤ 1 +
c
2
− 6h < 6. (2.5)

The quantity ℓ ∶= 1 + c
2 − 6h is always a non-negative integer and has been used frequently in the study of VOAs (e.g., Refs. 1, 9, and 22, among

many others).
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TABLE I. The eight rank 2 modular tensor categories from the perspective of VOAs and an extremal realization
where applicable.

No. S c mod 8 h mod 1 Name Extremal realization

1 1√
2
(

1 1
1 −1) 1 1

4 Semion A1,1 at c = 1

2 1√
2
(

1 1
1 −1) 7 3

4 Semion E7,1 at c = 7

3 1√
2
(
−1 1

1 1) −3 − 3
4 Semion† None

4 1√
2
(
−1 1

1 1) −5 − 1
4 Semion† None

5 1√
2+φ
(

1 φ
φ −1)

14
5

2
5 Fib G2,1 at c = 14

5

6 1√
2+φ
(

1 φ
φ −1)

26
5

3
5 Fib F4,1 at c = 26

5

7 1√
3−φ
(
−1 φ − 1

φ − 1 1 ) − 22
5 − 1

5 Yang − Lee Yang − Lee at c = − 22
5

8 1√
3−φ
(
−1 φ − 1

φ − 1 1 ) − 18
5 − 4

5 Yang − Lee None

The purpose of this article is to provide a list of all possible characters of extremal VOAs with rank(Rep(V)) = 2. Given a rank 2 modular
tensor category C and central charge c in the appropriate class mod 8 (as in Table I), there is a unique rational number hext in the appropriate
class mod 1 satisfying (2.5). When C is fixed, we will write hext(c) to emphasize the dependence on c.

The pair (C, c) of a modular tensor category and appropriate choice of c is called an admissible genus.3 For every admissible genus (C, c)
described by Table I, there is a representation ρc : PSL(2,Z)→ U(2,C) whose S matrix is given by the entry of the table and whose T matrix is
obtained by rescaling the categorical T matrix by e−2πic/24. These representations are simply a choice of normalization of the categorical S and
T matrices, and their existence does not depend in any way on vertex operator algebras. However, they are defined in such a way that if there
is a strongly rational VOA V with central charge c and Rep(V) = C, then ρV = ρc.

III. CHARACTERS OF VOAs WITH TWO SIMPLE MODULES
A. Characters and vector-valued modular forms

We briefly recall the relevant theory of vector-valued modular forms, following Refs. 14 and 23. We refer the reader to these references,
especially Ref. 14 (Sec. 2), for more details.

Let ρ : PSL(2,Z)→ GL(d,C) be an irreducible representation of the modular group, and assume that ρ( 1 1
0 1) is diagonal with finite

order. Let X : H→ C be a holomorphic function on the upper half-plane, which satisfies

X(γ ⋅ τ) = ρ(γ)X(τ) (3.1)

for all γ ∈ PSL(2,Z) and τ ∈ H. Choose a diagonal matrix Λ such that ρ( 1 1
0 1) = e2πiΛ, called an exponent matrix. For any choice of exponent

matrix, we may Fourier expand

q−ΛX(q) = ∑
n∈Z

X[n]qn (3.2)

for coefficients X[n] ∈ Cd. Let M(ρ) denote the space of functions X satisfying (3.1) such that X[n] = 0 for n sufficiently negative (observe
that this does not depend on the choice of Λ).
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Given a choice of exponent Λ, we define the principal part map

PΛ : M(ρ)→ span{vq−n : n > 0, v ∈ Cd
}

by
PΛX = ∑

n<0
X[n]qn,

where X[n] are as in (3.2).
An exponent matrix is called bijective if PΛ is an isomorphism. For ξ ∈ {1, . . . , d}, let eξ ∈ Cd be the corresponding standard basis vector.

Given a choice of bijective exponent matrix, let X(ξ)
∈M(ρ) be the function with PΛX(ξ)

= q−1eξ . In this case, X(1), . . . ,X(d) form a basis for
M(ρ) as a free C[J]-module, where

J = q−1 + 196884q + ⋅ ⋅ ⋅

is the J-invariant. The fundamental matrix Ξ is given by

Ξ = [X(1)
∣ ⋅ ⋅ ⋅ ∣X(d)

].

The characteristic matrix χ is given by the constant terms of Ξ taken in the q-expansion [shifted by Λ as in (3.2)], that is,

χ = [X(1)
[0] ∣ ⋅ ⋅ ⋅ ∣X(d)

[0] ].

Now, fix as in Sec. II a modular tensor category C of rank 2 and a choice of real number c in the appropriate class mod 8. From these
data, we specified a representation ρc of PSL(2,Z) with the property that if there exists a VOA V with central charge c and Rep(V) = C, then
its character vector (chj) satisfies (chj) ∈M(ρc). The key observation of Ref. 7 is that

Λ(c) =
⎛
⎜
⎝

1 −
c

24
0

0 hext(c) −
c

24

⎞
⎟
⎠
=: (λ0(c) 0

0 λ1(c))

is a bijective exponent for ρc, where hext is the real number lying in the appropriate class mod 1 that satisfies (2.5). Thus, by the definition of
fundamental matrix, we have the following theorem:

Theorem 3.1 (Ref. 7, Theorem 3.1). Let C be a modular tensor category of rank 2, and let c be a real number in the appropriate class mod
8. If V is an extremal VOA with central charge c and rank(Rep(V)) = C, then its character appears as the first column of the fundamental matrix
corresponding to the bijective exponent Λ(c).

Let χ(c) = (χ(c)ij)1
i,j=0 be the characteristic matrix taken with respect to Λ(c). Thus, if V is an extremal VOA with central charge c and

rank(Rep(V)) = 2, we have χ(c)00 = dimV(1). We will determine the possible values of c for which there exists an extremal VOA by showing
that for ∣c∣ sufficiently large, one of χ(c)00 or χ(c)10 is not a non-negative integer.

B. General recurrence
They key idea12 is to derive a recurrence relating the pair (χ(c + 24), hext(c + 24)) to (χ(c), hext(c)) and then study the long-term behavior

of this recurrence. In fact, to handle the case c→ +∞, one may derive a simple recurrence involving only the diagonal entries of χ (Ref. 12,
Lemma 6.4). To handle the case c→ −∞, we will use all of the entries of χ, and the relation will be slightly more complicated as a result.

Let M−2×2 be the set of 2 × 2 complex matrices whose bottom-left entry is non-zero, and let M+
2×2 be the set of matrices whose top-right

entry is non-zero. Define functions
f ± : M∓2×2 × (R/Z)→M±2×2 × (R/Z)

by

f +[(
x y
z w

), h] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

w + h(x − 240)
h + 1

1
z

(h + 1)2(h − 2)yz − (x −w + 120(h − 1))2 + 746496(h + 1)2

(h + 2)(h + 1)2 z
x + h(w + 240)

h + 1

⎞
⎟
⎟
⎟
⎠

, h + 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

f −[(
x y
z w

), h] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

−w + (h − 2)(x + 240)
h − 3

h(h − 3)2yz + (x −w + 120(h − 1))2
− 746496(h − 3)2

(h − 4)(h − 3)2 y

1
y

−x + (h − 2)(w − 240)
h − 3

⎞
⎟
⎟
⎟
⎠

, h − 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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By direct computation, one may check that these functions are invertible and f −1
± = f ∓. We will show that f ± take characteristic matrices to

characteristic matrices, but first we must check the following:

Lemma 3.2. Let χ be the fundamental matrix corresponding to a 2 × 2 bijective exponent Λ. Then, χ ∈M+
2×2 ∩M−2×2.

Proof. We show χ ∈M−2×2, and the other step is similar. Let X = X(1) be the first column of the fundamental matrix Ξ corresponding to

Λ = ( λ0 0
0 λ1
). If the bottom-left entry of χ were 0, this would imply that X was of the form

X = (qλ0 (q−1 + ⋅ ⋅ ⋅ )
qλ1 (z1q + ⋅ ⋅ ⋅ )

) (3.3)

for some z1 ∈ C. By Ref. 23, Theorem 4.1, Λ′ = ( λ0 − 1 0
0 λ1 + 1) is again a bijective exponent. However, examining (3.3), we see that PΛ′X = 0,

which is a contradiction. □

Lemma 3.3. Let (C, c) be an admissible genus from Table I, and let χ(c) denote the characteristic matrix of the representation ρc taken with
respect to the bijective exponent Λ(c). Then, [χ(c ± 24), hext(c ± 24)] = f ±[χ(c), hext(c)].

Proof. It is clear from (2.5), which characterizes hext , that hext(c ± 24) = hext(c) ± 2, and by examining Table I, we see that hext(c) is never
an integer. Since f −1

± = f ∓, it suffices to show that [χ(c + 24), hext(c + 24)] = f +[χ(c), hext(c)].
Let h = hext(c). By definition, we have

Λ ∶= Λ(c) =
⎛
⎜
⎝

1 −
c

24
0

0 h −
c

24

⎞
⎟
⎠

and

Λ+ ∶= Λ(c + 24) =
⎛
⎜
⎝

−
c

24
0

0 h + 1 −
c

24

⎞
⎟
⎠
= Λ(c) + (−1 0

0 1). (3.4)

Let Ξ ∶= Ξ(c) and Ξ+
∶= Ξ(c + 24) be the fundamental matrices corresponding to the bijective exponents Λ and Λ+, respectively, for the

representation ρc = ρc+24. We may expand

Ξ = (X(1)
∣X(2) ) = qΛ

(
q−1 +∑n≥0xnqn

∑n≥0ynqn

∑n≥0znqn q−1 +∑n≥0wnqn)

and

Ξ+ = (X(1)
+ ∣X

(2)
+ ) = qΛ+(

q−1 +∑n≥0x+
n qn

∑n≥0y+
nqn

∑n≥0z+
n qn q−1 +∑n≥0w

+
n qn).

Our goal is to show that

f +[(
x0 y0
z0 w0

), h] = [(x+
0 y+

0
z+

0 w+
0
), h + 2]. (3.5)

To do this, we must obtain formulas for x+
0 , y+

0 , z+
0 , and w+

0 in terms of x0, y0, z0, and w0, respectively.
Using (3.4), we have

Ξ+ = qΛ
(

q−2 + x+
0 q−1 + ⋅ ⋅ ⋅ y+

0 q−1 + ⋅ ⋅ ⋅
z+

0 q + ⋅ ⋅ ⋅ 1 + ⋅ ⋅ ⋅
). (3.6)

Thus,

PΛ X(1)
+ = (

q−2 + x+
0 q−1

0
) and PΛ X(2)

+ = (
y+

0 q−1

0
).

Since PΛ is injective, we have
X(2)

+ = y+
0X

(1). (3.7)

By (3.6), this identity reads as

(
y+

0 q−1 + ⋅ ⋅ ⋅
1 + ⋅ ⋅ ⋅

) = (
y+

0 q−1 + ⋅ ⋅ ⋅
y+

0 z0 + ⋅ ⋅ ⋅
),
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and thus,
y+

0 =
1
z0

. (3.8)

Note that z0 ≠ 0 by Lemma 3.2. This gives the formula for y+
0 , which corresponds to (3.5).

Substituting (3.8) into (3.7) yields X(2)
+ =

1
z0
X(1) from which we conclude

w+
0 =

z1

z0
(3.9)

by considering the second q-coefficient in the second entry of X(2)
+ . While this gives an expression for w+

0 in terms of z variables, it is not the
expression we are looking for due to the presence of the higher order coefficient z1. We will derive an expression for z1 in terms of lower order
coefficients later in the proof (3.15).

For now, we continue on and find expressions for x+
0 and z+

0 . By direct calculation,

PΛ((J + x+
0 − x0)X(1)

− z0X(2)
) = (

q−2 + x+
0 q−1

0
) = PΛX(1)

+ ,

where J(q) = q−1 + 196884q + ⋅ ⋅ ⋅. Since PΛ is injective, we have

(J + x+
0 − x0)X(1)

− z0X(2)
= X(1)

+ . (3.10)

We now multiply both sides of (3.10) by q−Λ, expanding out the left-hand side and substituting the expression from (3.6) for the right-hand
side, to obtain

(
q−2 + x+

0 q−1 + ⋅ ⋅ ⋅
γ0 + γ1q + ⋅ ⋅ ⋅

) = (
q−2 + x+

0 q−1 + ⋅ ⋅ ⋅
0 + z+

0 q + ⋅ ⋅ ⋅
),

where
γ0 = (x+

0 −w0 − x0)z0 + z1 and γ1 = 196884z0 −w1z0 − x0z1 + x+
0 z1 + z2.

Thus, γ0 = 0 and γ1 = z+
0 . The former yields

x+
0 = x0 + w0 −

z1

z0
. (3.11)

Substituting (3.11) into the equation z+
0 = γ1 and simplifying yield

z+
0 = −

z2
1

z0
+ z1w0 + z0(196884 −w1) + z2. (3.12)

Our aim now is to replace the higher order coefficients w1, z1, and z2 appearing in (3.9), (3.11), and (3.12) with expressions in terms of
x0, y0, z0, and w0. To do this, we use the differential equation [Ref. 14, Eq. (2.14)]

1
2πi

dΞ
dτ
− Ξ(τ)D(τ) = 0, (3.13)

where
D(τ) =

1
E(τ)
[(J(τ) − 240)(Λ − 1) + χ + [Λ, χ]]

for E(τ) = q−1
− 240 − 141444q − ⋅ ⋅ ⋅ . Examining the coefficient of q in the bottom-right entry of (3.13) yields

w1 =
1
2
(w0(w0 + 240) − (h − 2)y0z0 + 338328(h − 1 −

c
24

)). (3.14)

Similarly, examining the coefficients of q and q2 in the bottom-left entry of (3.13) yields

z1 =
x0 + h(w0 + 240)

h + 1
z0 (3.15)

and

z2 =
x0(z1 + 240z0) + z0(hw1 + 240hw0 + 199044h − 338328 c

24 )
h + 2

, (3.16)

respectively.
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We have now obtained expressions (3.14)–(3.16) for w1, z1, and z2, respectively, in terms of lower order coefficients. We may substitute
these formulas into expressions (3.9), (3.11), and (3.12) for w+

0 , x+
0 , and z+

0 , respectively, to obtain the formulas of (3.5). Combining with our
earlier expression (3.8) for y+

0 completes the proof. □

C. Recurrence for large positive c
We will show that for n sufficiently large, χ(c + 24n)00 < 0, and moreover, we will obtain an effective bound on such an n. We will do this

by iterating f +, although, in fact, a simpler function will suffice.

Lemma 3.4. Let g : C2
× (R/Z)→ C2

× (R/Z) be the function

g[x,w, h] = [
w + h(x − 240)

h + 1
,

x + h(w + 240)
h + 1

, h + 2],

and let gn denote its n-fold iterate. Then,

gn
[x,w, h] = [

nw + (h + n − 1)(x − 240n)
h + 2n − 1

,
nx + (h + n − 1)(w + 240n)

h + 2n − 1
, h + 2n].

Proof. This follows by a straightforward induction. □

Lemma 3.5. Let (C, c) be an admissible genus from Table I, and let χ(c) denote the characteristic matrix of the representation ρc taken with
respect to the bijective exponent Λ(c). Suppose that hext(c) > 0. Then, χ(c + 24n)00 < 0 when

n >
∣M∣ +

√
M2 + 960∣(hext(c) − 1)χ(c)00∣

480
,

where M = χ(c)00 + χ(c)11 − 240(hext(c) − 1).

Proof. Set a = χ(c)00, d = χ(c)11, and h = hext(c). By Lemmas 3.3 and 3.4, we have

χ(c + 24n)00 =
nd + (h + n − 1)(a − 240n)

h + 2n − 1
.

Since we assume h > 0, when n ≥ 0, we have h + 2n − 1 > 0. Thus, χ(c + 24n)00 < 0 if and only if

0 > nd + (h + n − 1)(a − 240n) = −240n2 + Mn + (h − 1)χ00. (3.17)

The right-hand side of (3.17) is a quadratic polynomial in n, which is concave down. Thus, (3.17) holds when n exceeds the largest real root
of that quadratic (and it holds trivially if the quadratic has no real roots). The conclusion of the lemma now follows immediately from the
quadratic formula. □

The purpose of Lemma 3.5 is to reduce the question of classifying extremal VOAs to a finite one. We apply it 24 times to obtain the
following theorem:

Theorem 3.6. For every rank 2 modular tensor category C, there is an explicitly computable cmax such that there are no extremal VOAs in
the genus (C, c) when c > cmax. The values are given in Table II, and the numbering of categories is the same as in Table I.

Proof. Let us first take C to be the Semion MTC. In this case, c ≡ 1 mod 8. We consider first the case c ≡ 1 mod 24. For c = 1, we

can compute the characteristic matrix χ(1) = (3 26752
2 −247) using, for example, the method of Ref. 7 (based on Ref. 14) or the method of

hypergeometric series.11 We can compute hext(1) = 1
4 from the definition of hext and the fact that h ≡ 1

4 mod 1. Applying Lemma 3.5 with these
data, we see that χ(1 + 24n) < 0 when n > 0.298 . . .. Thus, if nmax = 0, we have χ(1 + 24n) < 0 when n > nmax. By Theorem 3.1, there are no
extremal VOAs in the genera (C, 1 + 24n) when n > nmax.

We can repeat the above exercise for the values c = 9 and c = 17 and three times again for each row of Table I. The resulting characteristic
matrices, hext , and nmax are given in Table VI. For each category C, the value cmax in Table II is the maximum of the three values of c + 24nmax
corresponding to the three possible classes of c mod 24. □

D. Recurrence for very negative c
We will show that for n sufficiently large, we have ∣χ(c − 24n)10∣ < 1. Since χ(c − 24n)10 ≠ 0 by Lemma 3.2, this will guarantee that

χ(c − 24n)10 is not an integer. As with the case of very positive c, we will avoid finding an explicit expression for f n
±[χ(c), hext(c)]. Instead,

we extract the following pieces of the data that will be easier to work with. Let α(c) = χ(c)00 − χ(c)11 and β(c) = χ(c)10χ(c)01.
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TABLE II. cmx values for rank 2 modular tensor categories.

No. C cmax

1 Semion 57
2 Semion 39
3 Semion† 67
4 Semion† 37
5 Fib 174

5
6 Fib 186

5
7 Yang-Lee 338

5
8 Yang − Lee 222

5

The utility of studying β(c) is the following:

Lemma 3.7. Let (C, c) be an admissible genus from Table I, and suppose that ∣χ(c)10∣ ≤ 1 and ∣β(c − 24n)∣ > 1 for all n ≥ 1. Then,
∣χ(c − 24n)10∣ < 1 for all n ≥ 0.

Proof. By Lemma 3.3, we have χ(c − 24)10 = χ(c)−1
01 . Thus,

β(c) = χ(c)10χ(c)01 =
χ(c)10

χ(c − 24)10
.

Thus, if we know that ∣χ(c)10∣ ≤ 1 and ∣β(c − 24)∣ > 1, we can conclude that ∣χ(c − 24)∣10 < 1. We repeat this argument n times to complete the
proof. □

To see how β(c) depends on c, we introduce the function

k : C2
× (R/Z)→ C2

× (R/Z),

given by

k[α, β, h] = [
α(h − 1) + 480(h − 2)

h − 3
,

(h − 3)2(hβ − 746496) + (α + 120(h − 1))2

(h − 4)(h − 3)2 , h − 2].

This function was chosen so that

Lemma 3.8. Let (C, c) be an admissible genus from Table I. Then,

[α(c − 24), β(c − 24), hext(c − 24)] = k[α(c), β(c), hext(c)].

Proof. This follows by direct algebraic manipulation applied to Lemma 3.3 and the formula for f −. □

It is now an algebra exercise to determine the long-term behavior of α(c − 24n) and β(c − 24n).

Lemma 3.9. The n-fold iterate of k is given by

kn
[α, β, h] =

[
α(h − 1) + 480n(h − n − 1)

h − 2n − 1
,

n(h − n − 1)(α + 120(h − 1))2

(h − 2n)(h − 2n − 1)2(h − 2n − 2)
+

h(h − 2)β − 746496n(h − n − 1)
(h − 2n)(h − 2n − 2)

,

h − 2n].

Proof. The formula may be verified by a straightforward induction using the definition of k. □

We carefully examine the expression obtained in Lemma 3.9 to obtain a criterion to bound ∣β(c + 24n)∣ > 1.
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Lemma 3.10. Let (C, c) be an admissible genus from Table I, and suppose that hext(c) < 0 and β(c) > 1. Then, ∣β(c − 24n)∣ > 1 whenever

n >
∣α(c) − 120(1 − hext(c))∣(1 − hext(c))

860
. (3.18)

Proof. Let βn = β(c − 24n), which by Lemmas 3.8 and 3.9 is given by the formula

βn =
n(h − n − 1)(α + 120(h − 1))2

(h − 2n)(h − 2n − 1)2(h − 2n − 2)
+

h(h − 2)β − 746496n(h − n − 1)
(h − 2n)(h − 2n − 2)

,

where α = α(c) and h = hext(c) < 0.
We can write βn =

p(n)
q(n) for q(n) = (h − 2n)(h − 2n − 1)2(h − 2n − 2), and p is a certain polynomial of n. To show ∣βn∣ > 1, it suffices to

show that ∣p(n)∣ > ∣q(n)∣. Since q(n) > 0 by inspection when n ≥ 1, it suffices to show that p(n) > q(n) or that r(n) ∶= p(n) − q(n) > 0. Through
straightforward manipulation of the formula for βn, we have r(n) = r1(n) + r2(n), where

r1(n) =2985968n4 + 5971936(1 − h)n3+

+ (3732456(1 − h)2 + 4)n2 + (746488(1 − h)3 + 4(1 − h))n+

+ 4(−h)n(2 − h)(1 − h + n) + (−h)(2 − h)(β − 1)(1 − h + 2n)2,

r2(n) = − (1 − h + n)n(α − 120(1 − h))2.

Since h < 0 and β > 1, every term of r1(n) is positive. Thus, to show r(n) > 0, it suffices to find a term of r1(n) that controls r2(n).
To show

2985968n4 + r2(n) > 0,

it suffices to show
2985968n4

> (1 − h + n)2(α − 120(1 − h))2.

This will follow from the simple estimate Lemma 3.11 with A = 2 985 968, B = (α − 120(1 − h))2, and C = 1 − h, provided

2985968n2
> 2(α − 120(1 − h))2(1 + (1 − h)2).

This would follow from
2985968n2

> 4(α − 120(1 − h))2(1 − h)2

or equivalently
(2985968)

1
2 n > 2∣α − 120(1 − h)∣(1 − h).

This is an immediate consequence of our assumption (3.18). □

We used the following simple observation in the Proof of Lemma 3.10:

Lemma 3.11. Let A, B, C, and n be positive real numbers with n ≥ 1. Then, if

An2
> 2B(1 + C2),

it follows that
An4
> B(n + C)2.

Proof. It suffices to show An4
> 2B(n2 + C2) or equivalently (An2

− 2B)n2
> 2BC2. Instead, we may show An2

− 2B > 2BC2 since n ≥ 1
and An2

> 2B. This follows immediately from our hypothesis. □

We now apply Lemma 3.10 in 24 cases to obtain a lower bound on the central charge of extremal VOAs.

Theorem 3.12. For every rank 2 modular tensor category C, there is an explicitly computable cmin such that there are no extremal VOAs in
the genus (C, c) when c < cmin. The values are given in Table III. The numbering of categories is the same as Table I.

Proof. As in the Proof of Theorem 3.6, we will work through the necessary computation when C = Semion and obtain a bound that holds
for c ≡ 1 mod 24. Since hext(1) > 0, we must instead consider c = −23 in order to apply Lemma 3.10. We compute hext(−23) = − 7

4 using (2.5),
and we compute
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TABLE III. cmin values for rank 2 modular tensor categories.

No. C cmin

1 Semion −23
2 Semion −17
3 Semion†

−13
4 Semion†

−19
5 Fib − 106

5
6 Fib − 94

5
7 Yang-Lee − 62

5
8 Yang − Lee − 98

5

χ(−23) =
⎛
⎜
⎜
⎝

713
11

57264144384
11

1
26752

−
3397

11

⎞
⎟
⎟
⎠

,

and from there, α(−23) = 4110
11 and β(−23) = 23546112

121 . Thus, by Lemma 3.10, we have ∣β(−23 − 24n)∣ > 1 when n > 0.13 . . .. Taking nmax = 0,
we have ∣β(−23 − 24n)∣ > 1 when n > nmax. As ∣χ(−23 − 24nmax)10∣ < 1, we conclude that ∣χ(−23 − 24n)10∣ < 1 for all n > nmax, and thus, by
Theorem 3.1, there cannot be a VOA in the genus (C, c) when c < −23 and c ≡ 1 mod 24. We repeat this argument for the other two equivalence
classes of c mod 24, and the value cmin from Table III is the minimum of the allowed values.

We apply the above procedure to each of the eight modular categories appearing in Table I. The data from each of the cases are given in
Table VII. □

E. Main result
Combining Theorems 3.6 and 3.12, we obtain for every rank 2 modular tensor category C, a pair of numbers cmin and cmax such that if

V is an extremal VOA in the genus (C, c), then cmin ≤ c ≤ cmax. We can now compute the characteristic matrix of every remaining pair (C, c)
(e.g., by Lemma 3.3) and throw away any for which the first column does not consist of positive integers. We are left with 15 possibilities, all
but one of which are realized by VOAs that have previously been studied. The remaining character vector is realized by a VOA constructed
in Sec. IV. We summarize the result in Table IV.

Theorem 3.13. Let V be a strongly rational extremal VOA with two simple modules. Then it lies in one of the genera specified in Table IV
(and its character vector is given in Table V).

TABLE IV. Genera of extremal VOAs corresponding to rank 2 modular tensor categories.

C C Realization hext ℓ

Semion 1 A1,1
1
4 0

Semion 9 A1,1 ⊗ E8,1
1
4 4

Semion 17 22 5
4 2

Semion 33 Sec. 4 9
4 4

Semion 7 E7,1
3
4 0

Semion 15 E7,1 ⊗ E8,1
3
4 4

Semion 23 22 7
4 2

Fib 14
5 G2,1

2
5 0

Fib 54
5 G2,1 ⊗ E8,1

2
5 4

Fib 94
5 22 7

5 2
Fib 26

5 F4,1
3
5 0

Fib 66
5 F4,1 ⊗ E8,1

3
5 4

Fib 106
5 22 8

5 2
Yang-Lee − 22

5 Yang-Lee − 1
5 0

Yang-Lee 18
5 Y-L ⊗E8,1 − 1

5 4
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One of the main purposes of establishing classification results such as Theorem 3.13 is to find interesting new examples, such as the VOA
in the genus (Semion, 33) constructed in Sec. IV. The most interesting genera for which no VOA realizations are known are (DHaag, 8n),
where DHaag is the double of the Haagerup fusion category. Evans and Gannon computed possible character vectors for potential “Haagerup
VOAs” in the cases n = 1, 2, and 324 and used these characters to suggest strategies for constructing them. Subsequently, Gannon analyzed
the possible Lie algebra structures on the weight 1 vectors of Haagerup VOAs, as well as the structure of their cosets. Despite all of the
circumstantial evidence, however, no construction has been found for a Haagerup VOA.

The success in constructing a (Semion, 33) VOA may be regarded as further evidence of the fruitfulness of the Evans–Gannon approach
to the Haagerup VOA. While the Semion category is quite a bit simpler than DHaag, the central charge c = 33 is, in practice, quite large
compared to c = 8, 16, or 24, which is a source of added difficulty.

In the case of the (Semion, 33) VOA, the subVOA generated by weight 1 vectors is of type A1,1. The coset of this affine VOA is of
independent interest, and we record here its character vector,

q−32/24

⎛
⎜
⎜
⎜
⎜
⎝

1 + 0q + 69616q2 + 34668544q3 + ⋅ ⋅ ⋅
q9/4(426192 + 121366368q + ⋅ ⋅ ⋅ )

q7/4(10245 + 11330970q + ⋅ ⋅ ⋅ )
q2(69888 + 34664448q + ⋅ ⋅ ⋅ )

⎞
⎟
⎟
⎟
⎟
⎠

,

as well as the character vector of its holomorphic extension (the twisted orbifold of the rank 32 Barnes–Wall lattice),

q−32/24(1 + 0q + 139504q2 + 69332992q3 + ⋅ ⋅ ⋅ ).

IV. CONSTRUCTION OF THE EXTREMAL c = 33 EXAMPLE
The goal of this section is to prove the following theorem:

Theorem 4.1. There exists an extremal VOA in the genus (Semion, 33).

The key step in the construction will be the following:

Theorem 4.2. There exists a c = 32 holomorphic framed VOA V and its involution θ ∈ Aut(V) satisfying the following conditions:

(1) V(1) = 0.
(2) The unique irreducible θ-twisted V-module W has top weight 7/4.

We first give a Proof of Theorem 4.1 using Theorem 4.2.

Proof of Theorem 4.1. Suppose we have V , θ, and W as in Theorem 4.2. Let V± = {a ∈ V ∣ θa = ±a} be the eigenspace decompositions
and W =W+

⊕W− be the irreducible decomposition as a V+-module. Note that V+ is a strongly rational VOA by Ref. 25 (see also Ref. 26).
We assign the labeling W± such that the conformal weight of W+ is 7/4. It turns out that the conformal weight of W− is equal to 9/4 so that the
conformal weights of V+, V−, W+, and W− are 0, 2, 7/4, and 9/4, respectively. Since V is holomorphic, V+ has exactly four irreducible modules
V± and W±, and all of them are simple currents. The fusion algebra of V+ is isomorphic to the group algebra associated with (Z/2Z)2.

We consider a tensor product V+
⊗ Lŝl2 (1, 0) and its Z/2Z-graded simple current extension

U = V+
⊗ Lŝl2 (1, 0)⊕W+

⊗ Lŝl2 (1, 1),

which is strongly rational by Refs. 27 and 28 (see also Ref. 29, Theorem 4.13). Then, the weight 1 subspace of U is three-dimensional. It is easy
to see that U has exactly two irreducible untwisted modules, U and

M = V− ⊗ Lŝl2 (1, 1)⊕W−
⊗ Lŝl2 (1, 0),

whose conformal weight is 2 + 1/4 = 9/4 + 0 = 9/4. Thus, U is an extremal VOA with central charge 33 and two simple modules, as
desired. □

We will now prove Theorem 4.2 based on the theory of framed VOAs. We will use the same notation and terminology for the framed
VOAs as in Ref. 30. In particular, the product of codewords is defined by

α ⋅ β = (α1β1, . . . , αnβn) ∈ Zn
2

for α = (α1, . . ., αn) and β = (β1, . . . , βn) ∈ Zn
2 . We denote by 1n the codeword (1n) ∈ Zn

2 .
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Let V be a framed VOA with a Virasoro frame F = ⟨e1, . . ., en
⟩≅ L(1/2, 0)⊗n. Let (C, D) be the structure codes with respect to F and

V = ⊕α∈DVα be the corresponding 1/16-word decomposition. For β = (β1, . . . , βn) ∈ Zn
2 , we define

σβ ∶= ∏
i∈supp(β)

(−1)2o(ei), τβ ∶= ∏
i∈supp(β)

(−1)16o(ei), (4.1)

where o(a) denotes the grade preserving operator of a ∈ V . It follows from the fusion rules of L(1/2, 0)-modules that σβ ∈ Aut(V0) and τβ ∈

Aut(V) (cf. Ref. 31). The maps σ : Zn
2 → Aut(V0) and τ : Zn

2 → Aut(V) are group homomorphisms such that ker σ = C� and ker τ = D�.
Therefore, we have the following exact sequences:

0→ C� → Zn
2

σ
Ð→Im σ → 0,

0→ D� → Zn
2

τ
Ð→Im τ → 0.

(4.2)

We define the point-wise frame stabilizer [denoted by Stabpt
V (F) in Ref. 30] by

AutF(V) ∶= {g ∈ Aut(V) ∣ g(ei) = ei for 1 ≤ i ≤ n}. (4.3)

The structure of the point-wise frame stabilizer is determined in Ref. 30 as follows:

Theorem 4.3 (Ref. 30). Let V be a framed VOA with structure codes (C, D).

(1) Im τ ≅ Zn
2/D

� is a central subgroup of AutF(V).
(2) For θ ∈ AutF(V), there exists ξ ∈ Zn

2 and η ∈ Zn
2 such that θ∣V0 = σξ and θ2

= τη. In particular, θ4
= 1.

(3) For ξ ∈ Zn
2 , there exists θ ∈ AutF(V) such that θ∣V0 = σξ if and only if ξ ⋅D ⊂ C, and in this case, the order ∣θ∣ = 2 if and only if ξ ⋅D is a

doubly even subcode of C and otherwise ∣θ∣ = 4.
(4) Let P = {ξ ∈ Zn

2 ∣ ξ ⋅D ⊂ C}. Then, C� ⊂ P, and we have an exact sequence

1→ Zn
2/D

�
→ AutF(V)→ P/C� → 1.

We review a construction of the twisted modules from Ref. 30. Suppose we have a codeword ξ ∈ P such that ξ ⋅D is a doubly even
subcode of C. Let θ ∈ AutF(V) be an involution such that θ∣V0 = σξ . Note that such a θξ is not unique and only determined modulo Imτ by
(4) of Theorem 4.3. The fixed point subalgebra V+

= V⟨θ⟩ is a framed VOA with structure codes (C0, D), where C0
= C ∩ ⟨ξ⟩�. We denote

its 1/16-word decomposition by V+
= ⊕α∈DV+,α. Let X be an irreducible F-module isomorphic to L(1/2,1/16)⊗wt(ξ)

⊗ L(1/2, 0)⊗n−wt(ξ) whose
1/16-word is ξ. There exists an irreducible V+,0-module Y that contains X as an F-submodule (cf. Refs. 30 and 32). Since V = ⊕α∈DVα is a
Z2 ⊕D-graded simple current extension of V+,0, there exists τη ∈ Im τ such that the fusion product

W = V⊠V+,0 Y = ⊕
α∈D

Vα
⊠V+,0 Y (4.4)

has a unique structure of an irreducible θτη-twisted V-module. Since θ and θτη define the same automorphism σξ on the subalgebra V0 of
V , by replacing θ by θτη if necessary, we may regard W as an irreducible θ-twisted V-module. Each summand Vα

⊠V+,0 Y , α ∈ D, of W has the
1/16-word α + ξ so that its top weight is at least wt(ξ + α)/16. Summarizing, we have the following theorem:

Theorem 4.4. Let V = ⊕α∈DVα be a framed VOA with structure codes (C, D) with respect to a frame F ≅ L(1/2, 0)⊗n. Let ξ ∈ P be a code-
word such that ξ ⋅D is a doubly even subcode of C. Let X be the irreducible F-module isomorphic to L(1/2,1/16)⊗wt(ξ)

⊗ L(1/2, 0)⊗n−wt(ξ) such that
its 1/16-word is ξ. Then there exists an involutive automorphism θ ∈ Aut(V) and an irreducible θ-twisted V-module W such that θ∣V0 = σξ and
W contains X as an irreducible F-submodule. The top weight of W is at least min{wt(ξ + α)/16 ∣ α ∈ D}.

Recall the Reed–Muller (RM) codes. The first order Reed–Muller code RM(1, 4) of length 24 is defined by the following generating matrix:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1111 1111 1111 1111
1111 1111 0000 0000
1111 0000 1111 0000
1100 1100 1100 1100
1010 1010 1010 1010

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.5)

The dual code of RM(1, 4) is the second order Reed–Muller code RM(2, 4) = RM(1, 4) ⋅ RM(1, 4). The first order Reed–Muller code RM(1, 6)
of length 26 is defined by

RM(1, 6) = SpanZ2{(α, α, α, α), (016116016116), (032132) ∣ α ∈ RM(1, 4)}. (4.6)
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The weight enumerator of RM(1, 6) is x64 + 126x32 + 1. The dual code of RM(1, 6) is the fourth order Reed–Muller code RM(4, 6) of length 26.
It follows from the MacWilliams identity that the minimum weight of RM(4, 6) is 4. It is easy to see that

(α, β, γ, δ) ∈ RM(4, 6)
(α, β, γ, δ ∈ Z16

2 )
⇔

α + β + γ + δ ∈ RM(2, 4) = RM(1, 4)�,
wt(α) ≡ wt(β) ≡ wt(γ) ≡ wt(δ) mod 2. (4.7)

Since RM(1, 6) is triply even, there exists a c = 32 holomorphic framed VOA with structure codes (RM(4, 6), RM(1, 6)) by Remark 6 and
Theorem 10 of Ref. 30. Since the minimum weights of RM(1, 6) and RM(4, 6) are 32 and 4, respectively, the weight 1 subspace of such a VOA
is trivial. It follows from Theorem 3.13 of Ref. 33 that such a framed VOA is uniquely determined by its structure codes. On the other hand,
it is shown in Ref. 34 that the Z2-orbifold construction ṼBW32 of the lattice VOA associated with the Barnes–Wall lattice BW32 of rank 32 is a
c = 32 holomorphic framed VOA with structure codes (RM(4, 6), RM(1, 6)). The VOA ṼBW32 is studied in Refs. 34 and 35, and it has a finite
automorphism group of the shape 227.E6(2).

Theorem 4.5. The Z2-orbifolding ṼBW32 is the unique c = 32 holomorphic framed VOA with structure codes (RM(4, 6), RM(1, 6)).

We will prove Theorem 4.2 by using ṼBW32 . Let α1
= (116), α2

= (1808), α3
= (14041404), α4

= ({1202
}

4), and α5
= ({10}8) be the basis of

RM(1, 4) in (4.5). Then, by (4.6), the Reed–Muller code RM(1, 6) has a basis

γi
= (αi, αi, αi, αi), 1 ≤ i ≤ 5, γ6

= (016116016116), γ7
= (032132). (4.8)

Lemma 4.6. Let ν1, ν2, ν3, ν4
∈ Z16

2 , and let ξ = (ν1, ν2, ν3, ν4) ∈ Z64
2 . Then, ξ ⋅ RM(1, 6) is a subcode of RM(4, 6) if and only if the following

conditions are satisfied:

(i) ν1 + ν2 + ν3 + ν4
∈ RM(1, 4),

(ii) νi + νj
∈ RM(1, 4)� for 1 ≤ i < j ≤ 4, and

(iii) ν1, ν2, ν3, ν4 are even.
Moreover, ξ ⋅ RM(1, 6) is a doubly even subcode of RM(4, 6) if and only if it further satisfies the following condition:

(iv) ξ ⋅ γi, 1 ≤ i ≤ 5, are doubly even.

Proof. First, we prove that ξ ⋅ RM(1, 6) is a subcode of RM(4, 6) = RM(1, 6)� if and only if ξ satisfies conditions (i)–(iii). Let α,
β ∈ RM(1, 6). We have (ξ ⋅ α∣β) = (ξ∣α ⋅ β) so that ξ ⋅ RM(1, 6) is a subcode of RM(1, 6)� if and only if (ξ∣γi

⋅ γj) = 0 for 1 ≤ i ≤ j ≤ 7. For
1 ≤ i, j ≤ 5, we have

(ξ∣γi
⋅ γj) = ((ν1, ν2, ν3, ν4)∣(αi

⋅ αj, αi
⋅ αj, αi

⋅ αj, αi
⋅ αj)

= (ν1 + ν2 + ν3 + ν4
∣αi
⋅ αj)

so that (ξ∣γi
⋅ γj) = 0 for 1 ≤ i, j ≤ 5 if and only if ν1 + ν2 + ν3 + ν4

∈ (RM(1, 4) ⋅ RM(1, 4))� = RM(2, 4)� = RM(1, 4). Thus, we obtain condition
(i). Similarly, from (ξ∣γi

⋅ γj) = 0 for 1 ≤ i ≤ 5 and j = 6 and 7, we obtain ν2 + ν4, ν3 + ν4
∈ RM(1, 4)�. Since RM(1, 4) ⊂ RM(2, 4), it follows that

νi + νj
∈ RM(1, 4)� for 1 ≤ i < j ≤ 4, and we obtain condition (ii). In addition, from (ξ∣γi

⋅ γj) = 0 for 6 ≤ i, j ≤ 7, we obtain condition (iii). Thus,
ξ ⋅ RM(1, 6) is a subcode of RM(4, 6) if and only if ξ satisfies conditions (i)–(iii).

Now suppose ξ ⋅ RM(1, 6) is a subcode of RM(4, 6). As we have discussed, this is equivalent to that (ξ ⋅ γi
∣ξ ⋅ γj) = (ξ∣γi

⋅ γj) = 0 for 1 ≤
i, j ≤ 7 so that ξ ⋅ RM(1, 6) is self-orthogonal. Since a sum of mutually orthogonal doubly even codewords is again doubly even, ξ ⋅ RM(1, 6) is
doubly even if and only if all seven vectors ξ ⋅ γi, 1 ≤ i ≤ 7, are doubly even. It follows from condition (iii) that ξ ⋅ γ6 and ξ ⋅ γ7 are doubly even.
Therefore, ξ ⋅ RM(1, 6) is doubly even if and only if ξ satisfies condition (iv). □

Lemma 4.7. Let α be a weight 6 codeword of RM(2, 4). Then, the codeword

ξ = (α, α, α, αc) ∈ Z64
2

satisfies conditions (i)–(iv) in Lemma 4.6, where αc
= 116 + α. The weight enumerator of the coset ξ + RM(1, 6) is 64x28 + 64x36.

Proof of Theorem 4.2. Let V = ⊕α∈RM(1,6)Vα be a holomorphic framed VOA with structure codes (RM(4, 6), RM(1, 6)). Then,
V ≅ ṼBW32 by Theorem 4.5. Let

α = (0110 1100 1010 0000) ∈ RM(2, 4),

and set
ξ = (α, α, α, αc) ∈ Z64

2 . (4.9)

Let X be an irreducible L(1/2, 0)⊗64-module isomorphic to L(1/2,1/16)⊗28
⊗ L(1/2, 0)⊗36 such that its 1/16-word is ξ. By Theorem 4.4 and

Lemmas 4.6 and 4.7, there is an involution θ ∈ Aut(V) such that θ∣V0 = σξ and the irreducible θ-twisted V-module W has top weight
28/16 = 7/4. □
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APPENDIX: DATA

As in Ref. 7, we can compute potential character vectors for each of the allowed genera of Theorem 3.13, and they are given in Table V.
The realizations labeled with Ref. 22 arise as cosets of affine VOAs.

Table VI (which was used in the Proof of Theorem 3.6) has 24 rows, in groups of 3. Each group corresponds to a modular tensor category
from Table I, and each row within the group selects a representative of an equivalence class of admissible c mod 24. Table VI provides the
characteristic matrix (computed as in Ref. 7), the extremal conformal dimension hext(c) computed from the definition (2.5), and a value nmax
such that χ(c + 24n)00 < 0 when n > nmax, as computed using Lemma 3.5.

TABLE V. Characters of strongly rational extremal VOAs with two simple modules.

C C Realization Character

Semion 1 A1,1 q−1/24
(

1 + 3q + 4q2 + ⋅ ⋅ ⋅
q

1
4 (2 + 2q + 6q2 + ⋅ ⋅ ⋅ )

)

Semion 9 A1,1 ⊗ E8,1 q−9/24
(

1 + 251q + 4872q2 + ⋅ ⋅ ⋅
q

1
4 (2 + 498q + 8750q2 + ⋅ ⋅ ⋅ )

)

Semion 17 22 q−17/24
(

1 + 323q + 60860q2 + ⋅ ⋅ ⋅
q

5
4 (1632 + 162656q + 4681120q2 + ⋅ ⋅ ⋅ )

)

Semion 33 Sec. 4 q−33/24
(

1 + 3q + 86004q2 + ⋅ ⋅ ⋅
q

9
4 (565760 + 192053760q + ⋅ ⋅ ⋅ )

)

Semion 7 E7,1 q−7/24
(

1 + 133q + 1673q2 + ⋅ ⋅ ⋅
q

3
4 (56 + 968q + 7504q2 + ⋅ ⋅ ⋅ )

)

Semion 15 E7,1 ⊗ E8,1 q−15/24
(

1 + 381q + 38781q2 + ⋅ ⋅ ⋅
q

3
4 (56 + 14856q + 478512q2 + ⋅ ⋅ ⋅ )

)

Semion 23 22 q−23/24
(

1 + 69q + 131905q2 + ⋅ ⋅ ⋅
q

7
4 (32384 + 4418944q + 189846784q2 + ⋅ ⋅ ⋅ )

)

Fib 14
5 G2,1 q−7/60

(
1 + 14q + 42q2 + ⋅ ⋅ ⋅

q
2
5 (7 + 34q + 119q2 + ⋅ ⋅ ⋅ )

)

Fib 54
5 G2,1 ⊗ E8,1 q−27/60

(
1 + 262q + 7638q2 + ⋅ ⋅ ⋅

q
2
5 (7 + 1770q + 37419q2 + ⋅ ⋅ ⋅ )

)

Fib 94
5

22 q−47/60
(

1 + 188q + 62087q2 + ⋅ ⋅ ⋅
q

7
5 (4794 + 532134q + 17518686q2 + ⋅ ⋅ ⋅ )

)

Fib 26
5 F4,1 q−13/60

(
1 + 52q + 377q2 + ⋅ ⋅ ⋅

q
3
5 (26 + 299q + 1702q2 + ⋅ ⋅ ⋅ )

)

Fib 66
5 F4,1 ⊗ E8,1 q−33/60

(
1 + 300q + 17397q2 + ⋅ ⋅ ⋅

q
3
5 (26 + 6747q + 183078q2 + ⋅ ⋅ ⋅ )

)

Fib 106
5

22 q−33/60
(

1 + 106q + 84429q2 + ⋅ ⋅ ⋅
q

8
5 (15847 + 1991846q + 76895739q2 + ⋅ ⋅ ⋅ )

)

Yang-Lee − 22
5 Yang-Lee q11/60

(
1 + 0q + q2 + ⋅ ⋅ ⋅

q−
1
5 (1 + q + q2 + ⋅ ⋅ ⋅ )

)

Yang-Lee 18
5 Y − L⊗ E8,1 q−3/20

(
1 + 248q + 4125q2 + ⋅ ⋅ ⋅

q−
1
5 (1 + 249q + 4373q2 + ⋅ ⋅ ⋅ )

)
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TABLE VI. Values of nmax computed from Lemma 3.5.

No. C C χ(c) hext(c) nmax

1 Semion 1 (
3 26752
2 −247)

1
4 0

1 Semion 9 (
251 26752

2 1 )
1
4 2

1 Semion 17 (
323 88

1632 −319)
5
4 0

2 Semion 7 (
133 1248

56 −377)
3
4 0

2 Semion 15 (
381 1248

56 −129)
3
4 1

2 Semion 23 (
69 10

32384 −65)
7
4 0

3 Semion† 11 (
−319 1632

88 323)
3
4 0

3 Semion† 19 (
−247 2

26752 3)
7
4 2

3 Semion† 27 (
1 2

26752 251)
7
4 0

4 Semion† 5 (
−65 32384

10 69 )
1
4 0

4 Semion† 13 (
−377 56
1248 133)

5
4 1

4 Semion† 21 (
−129 56
1248 381)

5
4 0

5 Fib 14
5 (

14 12857
7 −258)

2
5 0

5 Fib 54
5 (

262 12857
7 −10 )

2
5 1

5 Fib 94
5 (

188 46
4794 −184)

7
5 0

6 Fib 26
5 (

52 3774
26 −296)

3
5 0

6 Fib 66
5 (

300 3774
26 −48)

3
5 1

6 Fib 106
5 (

106 17
15847 −102)

8
5 0

7 Yang − Lee 58
5 (

−406 902
87 410)

4
5 0

7 Yang − Lee 98
5 (

−245 1
26999 1)

9
5 2

7 Yang − Lee 138
5 (

3 1
26999 249)

9
5 0

8 Yang − Lee 22
5 (

−55 32509
11 59 )

1
5 1

8 Yang − Lee 62
5 (

−434 57
682 190)

6
5 1

8 Yang − Lee 102
5 (

−186 57
682 438)

6
5 1
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TABLE VII. Values of nmax computed from Lemma 3.10.

No. C c χ(c) hext(c) α(c) β(c) nmax χ10(c)

1 Semion −7
⎛

⎝

59 13424640
1

88
−55

⎞

⎠
− 3

4 114 1678080
11 0 1

88

1 Semion −15
⎛
⎜
⎜
⎝

3441
11

57264144384
11

1
26752

−
669
11

⎞
⎟
⎟
⎠

− 7
4

4110
11

23546112
121 0 1

26752

1 Semion −23
⎛
⎜
⎜
⎝

713
11

57264144384
11

1
26752

−
3397

11

⎞
⎟
⎟
⎠

− 7
4

4110
11

23546112
121 0 1

26752

2 Semion −1
⎛
⎜
⎜
⎝

49
5

3281408
5

1
10

−29
5

⎞
⎟
⎟
⎠

−1
4

78
5

1640704
25 0 1

10

2 Semion −9
⎛
⎜
⎜
⎝

863
3

747151360
3

1
1248

−107
3

⎞
⎟
⎟
⎠

−5
4

970
3

23348480
117 0 1

1248

2 Semion −17
⎛
⎜
⎜
⎝

119
3

747151360
3

1
1248

−851
3

⎞
⎟
⎟
⎠

−5
4

970
3

23348480
117 0 1

1248

3 Semion† 3
⎛

⎝

249 565760
1
2

3
⎞

⎠

−1
4 246 282 880 0 1

2

3 Semion†
−5

⎛

⎝

1 565760
1
2

−245
⎞

⎠

−1
4 246 282 880 0 1

2

3 Semion†
−13

⎛
⎜
⎜
⎝

299
3

827924480
3

1
1632

−287
3

⎞
⎟
⎟
⎠

−5
4

586
3

1521920
9 0 1

1632

4 Semion†
−3

⎛
⎜
⎜
⎝

1857
7

83232768
7

1
56

−93
7

⎞
⎟
⎟
⎠

−3
4

1950
7

10404096
49 0 1

56

4 Semion†
−11

⎛
⎜
⎜
⎝

121
7

827924480
3

1
1632

−1829
7

⎞
⎟
⎟
⎠

−3
4

1950
7

10404096
49 0 1

56

4 Semion†
−19

⎛
⎜
⎜
⎝

1501
11

62591041536
11

1
32384

−1457
11

⎞
⎟
⎟
⎠

−7
4

2958
11

21260544
121 0 1

32384

5 Fib −26
5

⎛
⎜
⎜
⎝

91
2

13051833
2

1
46

−83
2

⎞
⎟
⎟
⎠

−8
5 87 567471

4 0 1
46

5 Fib −66
5

⎛
⎜
⎜
⎝

3966
13

32712244109
13

1
12857

−690
13

⎞
⎟
⎟
⎠

−8
5

4656
13

33076081
169 0 1

12857

5 Fib −106
5

⎛
⎜
⎜
⎝

742
13

32712244109
13

1
12857

−3914
13

⎞
⎟
⎟
⎠

−8
5

4656
13

33076081
169 0 1

12857
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TABLE VII. (Continued.)

No. C c χ(c) hext(c) α(c) β(c) nmax χ10(c)

6 Fib −14
5

⎛

⎝

26 1951158
1

17
−22

⎞

⎠

−2
5 48 114 774 0 1

17

6 Fib −54
5

⎛

⎝

295 745916226
1

3774
−43

⎞

⎠

−7
5 338 3359983

17 0 1
3774

6 Fib −94
5

⎛

⎝

47 745916226
1

3774
−291

⎞

⎠

−7
5 338 3359983

17 0 1
3774

7 Yang − Lee 18
5 (

248 310124
1 4 )

−1
5 244 310 124 0 1

7 Yang − Lee −22
5 (

0 310124
1 −244 )

−1
5 244 310 124 0 1

7 Yang − Lee −62
5

⎛
⎜
⎜
⎝

1054
11

1667924403
11

1
902

−1010
11

⎞
⎟
⎟
⎠

−6
5

2064
11

40681083
242 0 1

902

8 Yang − Lee −18
5

⎛
⎜
⎜
⎝

802
3

35954954
3

1
57

−46
3

⎞
⎟
⎟
⎠

−4
5

848
3

1892366
9 0 1

57

8 Yang − Lee −58
5

⎛
⎜
⎜
⎝

58
3

35954954
3

1
57

−790
3

⎞
⎟
⎟
⎠

−4
5

848
3

1892366
9 0 1

57

8 Yang − Lee −98
5

⎛

⎝

140 5726299516
1

323509
−136

⎞

⎠

−9
5 276 3346756

19 0 1
323509

Table VII (which was used in the Proof of Theorem 3.12) again has 24 rows, in the same groups of 3. Each group corresponds to a
modular tensor category from Table I, and each row within the group selects a representative of an equivalence class of admissible c mod 24.
Table VII provides the characteristic matrix (computed as in Ref. 7), the extremal conformal dimension hext(c) computed from the definition
(2.5), and β(c) and α(c) computed directly from the characteristic matrix. Using these data, we apply Lemma 3.10 to obtain a value nmax such
that ∣β(c − 24n)∣ > 1 when n > nmax. In fact, nmax = 0 in all cases.
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