

Imbalanced Learning using Actuarial Modified Loss Function in Tree-Based Models The 56th Actuarial Research Conference

Changyue Hu, Zhiyu Quan, Alfred Chong University of Illinois at Urbana-Champaign

Outline

- Why Motivation
 - Imbalance problem in insurance claim prediction
 - Pitfall of CART
- $\cdot~$ How Modification to loss function of CART
 - WSSE loss function
 - Canberra loss function
- What Results on simulated dataset

Motivation

- Insurance loss datasets usually contain a high percentage of zero claims.
- Problem of imbalance:
 - Majority (zero claims), minority (nonzero claims).
 - Standard algorithms fail to properly depict data characteristics and therefore yield poor prediction accuracy.

Imbalanced learning techniques

- **Resampling:** rebalance the sample space.
 - Over-sampling: add more samples from the minority.
 - Under-sampling: removing samples from the majority.
- Ensemble methods: combine weak learners to improve prediction ability.
 - Parallel-based ensembles: bagging.
 - Iterative-based ensembleg: boosting.
- Cost-sensitive learning: different costs for different prediction errors.

We borrow the idea of cost-sensitive learning to modify the loss function of CART.

Overview of CART algorithm and notation

- Step 1: Grow a large tree.
 - Recursive binary splitting.
- Step 2: Prune the large tree.
 - Cost-complexity pruning.
- Notation:
 - Response variable as $\mathbf Y$ from the sample space as $\mathcal Y.$
 - N denotes the number of observations.
 - *i*th sample with *p*-dimensional explanatory variables is denoted as $\mathbf{X}_i = (x_{i1}, x_{i2} \dots, x_{ip}), i = 1 \dots N$, which is sampled from the space $\mathcal{X} = \mathcal{X}_1 \times \dots \times \mathcal{X}_p$.

CART - grow a large tree

• Regression tree, denoted by $T(\mathbf{X}, \Theta)$, is produced by partitioning the space of the explanatory variables into M disjoint regions R_1, R_2, \ldots, R_M and then assigning a constant c_m for each region R_m , for $m = 1, 2, \ldots, M$.

$$T(\mathbf{X}_i, \Theta) = \sum_{m=1}^{M} c_m \mathbf{1}_{R_m}(\mathbf{X}_i) \text{ where } \Theta = \{R_m, c_m\}_{m=1}^{M}$$

FIGURE 9.2. Partitions and CART. Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction.

CART - splitting criteria

• Sum of Squared Errors (SSE) as loss function.

$$L(\mathbf{y}, \widehat{\mathbf{y}}) = \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2$$

- Two daughter nodes: left node $R_L(j,s) = \{\mathbf{X}_i | X_{\cdot j} < s\}$ and right node $R_R(j,s) = \{\mathbf{X}_i | X_{\cdot j} \ge s\}$ in the case of a continuous explanatory variable,
- Exhaustive search to find the best split: checks all potential splitting points on all possible splitting explanatory variables.
- The best split is the one selected corresponds to the minimum of the sum of loss at two subregions,

$$\underset{j,s}{\operatorname{argmin}} \sum_{i:\mathbf{X}_{i} \in R_{l}(j,s)} \left(y_{i} - \widehat{c}_{R_{l}(j,s)} \right)^{2} + \sum_{i:\mathbf{X}_{i} \in R_{r}(j,s)} \left(y_{i} - \widehat{c}_{R_{r}(j,s)} \right)^{2}.$$

Motivating example - pitfall of the default split

- The default method (ANOVA) under SSE fails to separate zeros and nonzeroes as anticipated.
- The zeros will be grouped together with certain small but non-zero values.
- The sum of squared errors is heavily influenced by the prediction error of the nonzero responses.

Actuarial modified loss function- WSSE

- Modify the sum of squared errors by assigning a larger weight to the prediction errors of observations with zero responses.
- We define the **weighted sum of squared errors (WSSE)** as a loss function:

$$L_{w}(\mathbf{y}, \widehat{\mathbf{y}}) = w_{0} \sum_{\substack{i: y_{i} = 0 \\ \text{zero claims}}} \left(y_{i} - \widehat{y}_{i} \right)^{2} + w_{1} \sum_{\substack{i: y_{i} \neq 0 \\ \text{nonzero claims}}} \left(y_{i} - \widehat{y}_{i} \right)^{2}$$

- w_0 and w_1 are the hyperparameters denoting the weights for the observations with zero response and non-zero response respectively.
- The default size of the weights, w_0 and w_1 , are determined by the percentage of zero responses in the data.

Actuarial modified loss function - Canberra loss

- Prediction error between 0 & 1 = Prediction error between 100 & 101 ?
- **Canberra distance** between y_i and \hat{y}_i is given as follows:

$$d_{\text{CAD}} : (y_i, \hat{y}_i) \mapsto \frac{|y_i - \hat{y}_i|}{|y_i| + |\hat{y}_i|},$$

- Canberra distance is a biased measure and very sensitive to values close to zero.
- We define the **Canberra loss function** as

$$L_c\left(\mathbf{y}, \widehat{\mathbf{y}}\right) = \sum_{i=1}^{N} f_{\text{SCAD}}(y_i, \widehat{y}_i), \text{ where } f_{\text{SCAD}}(y_i, \widehat{y}_i) = \begin{cases} 0 & y_i = \widehat{y}_i = 0, \\ \frac{(y_i - \widehat{y}_i)^2}{y_i^2 + \widehat{y}_i^2} & \text{otherwise.} \end{cases}$$

PREDICTION	SQUARED ERROR	CANBERRA	SQUARED CANBERRA	
(0, 1)	$(0-1)^2 = 1$	$\frac{ 0-1 }{ 0 + 1 } = 1$	$\frac{(0-1)^2}{0^2+1^2} = 1$	
(100, 101)	$(100 - 101)^2 = 1$	$\frac{ 100-101 }{ 100 + 101 } \approx 0.005$	$\frac{(100-101)^2}{100^2+101^2} \approx 0.00005$	10/17

Splitting choice of WSSE tree & Canberra tree

- WSSE tree and the Canberra tree provide better splitting performance than the ANOVA tree when the data contains a large proportion of zero response.
- · Canberra tree can effectively separate zeros and nonzeroes as anticipated.

Simulation study - data generation

- To mimic the real-life insurance datasets, we generate a simulated dataset that contains 50% of zero responses.
- Simulation design:
 - Explanatory variables: $\mathbf{X} = (\mathbf{X}_{categorical}, \mathbf{X}_{continuous})$.
 - $\mathbf{X}_{continuous} \sim N_p(0, \Sigma)$, where $\Sigma_{ij} = Cov(\mathbf{X}_i, \mathbf{X}_j) = (0.8)^{i-j}$. N = 100, p = 5.
 - $\mathbf{X}_{categorical}$, random sampling from the set of integers (-3, -2, 1, 4), with respective probabilities of (0.1, 0.2, 0.2, 0.5).

- Linear coefficients:
$$\beta = (-0.1, \underbrace{1.0, 1.0}_{2 \text{ cat}}, \underbrace{0.5, 0.5}_{2 \text{ catl}}, \underbrace{0}_{1 \text{ cat}}, \underbrace{1.0, 1.0}_{2 \text{ con}}, \underbrace{0.5, 0.5}_{2 \text{ con}}, \underbrace{0}_{1 \text{ con}})^T$$

- Response variable: \boldsymbol{Y} , generated from a Tweedie GLM framework,

$$y_i \sim Tweedie(\mu_i, \phi, \xi),$$

with the log link function $g(\mu_i) = \log(\mu_i) = \mathbf{X}_i \boldsymbol{\beta}$, the dispersion parameter $\boldsymbol{\phi} = 2$, and the variance power parameter $\boldsymbol{\xi} = 1.7$.

Result - density plots

13/17

Result - heatmap

Concluding remarks

- Motivation:
 - The default CART is insufficient to handle insurance datasets that contains a high percentage of zeros.
- Modification:
 - The WSSE tree and the Canberra tree is more effective at separating zero claims from nonzero claims observations than the default CART.
- Simulation Study:
 - The WSSE tree and the Canberra tree offer better prediction performance than the default CART.
- Details about the implementation are given in the paper.

Selected references

- Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and Regression Trees.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009).The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer
- Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., and Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications.Expert Systems withApplications, 73:220–239.
- He, H. and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9):1263–1284.
- Lance, G. N. and Williams, W. T. (1966). Computer programs for hierarchical polythetic classification ("similarity analyses"). The Computer Journal, 9(1):60–64.
- Therneau, T. (2019). User written splitting functions for RPART. Technical report, MayoClinic.
- Therneau, T. M. and Atkinson, E. J. (1997). An introduction to recursive partitioning using the RPART routines. Technical report, Mayo Foundation

Thank you for your attention!