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Motivation
Insurance loss datasets usually contain a high percentage of zero claims.

Problem of imbalance:

·

·

Majority (zero claims), minority (nonzero claims).

Standard algorithms fail to properly depict data characteristics and therefore yield
poor prediction accuracy.

-

-
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Imbalanced learning techniques

We borrow the idea of cost-sensitive learning to modify the loss function of CART.

Resampling: rebalance the sample space.

Ensemble methods: combine weak learners to improve prediction ability.

Cost-sensitive learning: di"erent costs for di"erent prediction errors.

·

Over-sampling: add more samples from the minority.

Under-sampling: removing samples from the majority.

-

-

·

Parallel-based ensembles: bagging.

Iterative-based ensembleg: boosting.

-

-

·
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Overview of CART algorithm and notation
Step 1: Grow a large tree.

Step 2: Prune the large tree.

Notation:

·

Recursive binary splitting.-

·

Cost-complexity pruning.-

·

Response variable as  from the sample space as .

 denotes the number of observations.

th sample with -dimensional explanatory variables is denoted as 
, , which is sampled from the space 

.

- Y 

- N
- i p

= ( , … , )Xi xi1 xi2 xip i = 1 … N
 = × … ×1 p
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CART - grow a large tree

FIGURE 9.2. Partitions and CART. Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction.

Regression tree, denoted by , is produced by partitioning the space of the
explanatory variables into  disjoint regions  and then assigning a
constant  for each region , for .

· T(X, Θ)
M , , … ,R1 R2 RM

cm Rm m = 1, 2, … , M

T( , Θ) = ( ) where Θ = { ,Xi ∑
m=1

M
cm 1Rm Xi Rm cm }M

m=1
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CART - splitting criteria
Sum of Squared Errors (SSE) as loss function.

Two daughter nodes: left node  and right node 
 in the case of a continuous explanatory variable,

Exhaustive search to !nd the best splitғchecks all potential splitting points on all possible
splitting explanatory variables.

The best split is the one selected corresponds to the minimum of the sum of loss at two
subregions,

·

L(y, ) =ŷ ∑
i=1

N

( − )yi ŷi
2

· (j, s) = { | < s}RL Xi X⋅j
(j, s) = { | ≥ s}RR Xi X⋅j

·

·

+ .argmin
j,s ∑

i: ∈ (j,s)X i Rl

( − )yi ĉ (j,s)Rl
2

∑
i: ∈ (j,s)X i Rr

( − )yi ĉ (j,s)Rr
2
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Motivating example - pitfall of the default split

The default method (ANOVA) under SSE fails to separate zeros and nonzeroes as
anticipated.

The zeros will be grouped together with certain small but non-zero values.

The sum of squared errors is heavily in#uenced by the prediction error of the nonzero
responses.

·

·

·
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Actuarial modi!ed loss function- WSSE
Modify the sum of squared errors by assigning a larger weight to the prediction errors of
observations with zero responses.

We de!ne the  as a loss function:

·

· weighted sum of squared errors (WSSE)

(y, ) = +Lw ŷ w0 ∑
i: =0yi

( − )yi ŷi
2

  
zero claims

w1 ∑
i: ≠0yi

( − )yi ŷi
2

  
nonzero claims

 and  are the hyperparameters denoting the weights for the observations with zero
response and non-zero response respectively.

The default size of the weights,  and , are determined by the percentage of zero
responses in the data.

· w0 w1

· w0 w1
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Actuarial modi!ed loss function - Canberra loss

PREDICTION SQUARED ERROR CANBERRA SQUARED CANBERRA

(0, 1)

(100, 101)

Prediction error between 0 & 1 = Prediction error between 100 & 101 ?

Canberra distance between  and  is given as follows:

Canberra distance is a biased measure and very sensitive to values close to zero.

We de!ne the  as

·

· yi ŷi

: ( , ) ↦ ,dCAD yi ŷi
−∣∣yi ŷi ∣∣
+∣∣yi ∣∣ ∣∣ŷ i ∣∣

·

· Canberra loss function

(y, ) = ( , ),  where ( , ) =Lc ŷ ∑
i=1

N
fSCAD yi ŷi fSCAD yi ŷi

⎧

⎩
⎨⎪⎪

0
( −yi ŷi)2

+y2
i ŷ2

i

= = 0,yi ŷi

otherwise.

(0 − 1 = 1)2 = 1∣0−1∣
∣0∣+∣1∣ = 1(0−1)2

+02 12

(100 − 101 = 1)2 ≈ 0.005∣100−101∣
∣100∣+∣101∣ ≈ 0.00005(100−101)2

+1002 1012
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Splitting choice of WSSE tree & Canberra tree

WSSE tree and the Canberra tree provide better splitting performance than the ANOVA tree
when the data contains a large proportion of zero response.

Canberra tree can e"ectively separate zeros and nonzeroes as anticipated.

·

·
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Simulation study - data generation
To mimic the real-life insurance datasets, we generate a simulated dataset that contains
50% of zero responses.

Simulation design:

·

·

Explanatory variables: .

, where . , .

, random sampling from the set of integers , with
respective probabilities of .

Linear coe$cients: 

Response variable: , generated from a Tweedie GLM framework,

with the log link function , the dispersion parameter ,
and the variance power parameter .

- X = ( , )Xcategorical Xcontinuous

- ∼ (0, Σ)Xcontinuous Np = Cov( , ) = (0.8Σij Xi Xj )i−j N = 100 p = 5
- Xcategorical (−3, −2, 1, 4)

(0.1, 0.2, 0.2, 0.5)
- β = (−0.1, , , , , ,1.0, 1.0

⏟2 cat
0.5, 0.5
⏟2 catl

0
⏟1 cat

1.0, 1.0
⏟2 con

0.5, 0.5
⏟2 con

0
⏟1 con

)T

- Y

∼ Tweedie( , ϕ, ξ),yi μi

g( ) = log( ) = βμi μi Xi ϕ = 2
ξ = 1.7
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Result - density plots
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Result - heatmap
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Concluding remarks
Motivation:

Modi!cation:

Simulation Study:

Details about the implementation are given in the paper.

·

The default CART is insu$cient to handle insurance datasets that contains a high
percentage of zeros.

-

·

The WSSE tree and the Canberra tree is more e"ective at separating zero claims
from nonzero claims observations than the default CART.

-

·

The WSSE tree and the Canberra tree o"er better prediction performance than the
default CART.

-

·
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Q&A
Thank you for your attention!
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