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Motivation

Insurance loss datasets usually contain a high percentage of zero claims.

Problem of imbalance:

- Majority (zero claims), minority (nonzero claims).

- Standard algorithms fail to properly depict data characteristics and therefore yield
poor prediction accuracy.
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Imbalanced learning techniques

+ Resampling: rebalance the sample space.

- Over-sampling: add more samples from the minority.
- Under-sampling: removing samples from the majority.

- Ensemble methods: combine weak learners to improve prediction ability.

- Parallel-based ensembles: bagging.
- Iterative-based ensembleg: boosting.

+ Cost-sensitive learning: different costs for different prediction errors.

We borrow the idea of cost-sensitive learning to modify the loss function of CART.
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Overview of CART algorithm and notation

- Step 1: Grow a large tree.

- Recursive binary splitting.
- Step 2: Prune the large tree.

- Cost-complexity pruning.
- Notation:

- Response variable as Y from the sample space as V.

- N denotes the number of observations.

- ith sample with p-dimensional explanatory variables is denoted as
X, =1, X2 ...,%p), i=1...N, which is sampled from the space

X=X X...X&X,.
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CART - grow a large tree

- Regression tree, denoted by 7'(X,®), is produced by partitioning the space of the
explanatory variables into M disjoint regions Ri,R3,...,Ry and then assigning a
constant ¢, for each regionR,,,form =1,2,... , M.

M

M
T(X;,0) = ) cnlg, (X;) where ©® = {Ryy, ¢ by
m=1
X1 <t
Rs
X2 <t X1 < t3 Rz ‘
S R
t Ry
X2 <14
Ri R, Rj R
t1 t
Ry Rs X

FIGURE 9.2. Partitions and CART. Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
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CART - splitting criteria

+ Sum of Squared Errors (SSE) as loss function.

L(y.§) = ﬁ (i =)

i=1
- Two daughter nodes: left node Rp(j,s) = {X;IX; <s} and right node

Rr(j,s) = {X;|X; > s} inthe case of a continuous explanatory variable,

+ Exhaustive search to find the best split: checks all potential splitting points on all possible
splitting explanatory variables.

+ The best split is the one selected corresponds to the minimum of the sum of loss at two
subregions,

argmin 2 (y,- — /C\Rl(j,s)>2 + Z ()’i - /C\Rr(i,S))2°
IS i XGER(,s) : X ER,(j,$)
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Motivating example - pitfall of the default split

OBS. X1 X2 V7 __ i
1 1 A 0 0.81 0.81
2 2 A 0 Iy \ .
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3 3 A 0 _g g 06
4 4 B 0 » ® /
® ® /
5 5 B 0 c 0.4 c
© ©
6 6 B 0 8 @ 04
O Q]
7 7 B 0 0.2+
8 8 C 1 0.2 /
9 9 D 2 0.041— , , , , , , , , , , ,
1 2 3 4 5 6 7 8 9 A B c
10 10 D 3 Splitting points Splitting points

+ The default method (ANOVA) under SSE fails to separate zeros and nonzeroes as
anticipated.

+ The zeros will be grouped together with certain small but non-zero values.

- The sum of squared errors is heavily influenced by the prediction error of the nonzero
responses.
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Actuarial modified loss function- WSSE

-+ Modify the sum of squared errors by assigning a larger weight to the prediction errors of
observations with zero responses.

- We define the weighted sum of squared errors (WSSE) as a loss function:

LoD =wo Y (=9 +wi Y (=5

i:y;=0 i:y; 70
\\ 7/ \\ /
h'd '

zero claims nonzero claims

+ wo and wp are the hyperparameters denoting the weights for the observations with zero
response and non-zero response respectively.

- The default size of the weights, wg and wi, are determined by the percentage of zero
responses in the data.
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Actuarial modified loss function - Canberra loss

- Prediction error between 0 & 1 = Prediction error between 100 & 101 ?

. Canberra distance between y; and y; is given as follows:

|)’i —/y\il
il + il

dcap @ (i, Y;) —

- Canberra distance is a biased measure and very sensitive to values close to zero.

- We define the Canberra loss function as

N 0 yi=Yi =0,
A A A~ ~N2
Lc(y, Y) = ZfSCAD (i ¥i)» where fscap (0, ¥) =9 O =) otherwise
l L y,‘ + yi
PREDICTION SQUARED ERROR CANBERRA SQUARED CANBERRA
N2 _ 011 _ 0-1?% _
0, 1) O-1"=1 o = 1 o =1
B 2 _ [100—101] | (100-101)*
(100, 101) (100 — 101)° =1 Toorion ~ 0-005 oo ~ 0.00005
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Splitting choice of WSSE tree & Canberra tree
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WSSE tree and the Canberra tree provide better splitting performance than the ANOVA tree
when the data contains a large proportion of zero response.

Canberra tree can effectively separate zeros and nonzeroes as anticipated.
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Simulation study - data generation

- To mimic the real-life insurance datasets, we generate a simulated dataset that contains
50% of zero responses.

+ Simulation design:

Explanatory variables: X = (Xcaegorical » Xcontinuous ) -

X continuous ~ Np(0, Z), where Z;; = Cov(X;, X;) = (0.8)"7 .N = 100,p = 5.
Xcategorical, random sampling from the set of integers (=3,-2,1,4), with
respective probabilities of (0.1, 0.2,0.2,0.5).

Linear coefficients: f# = (—0.1,‘1.0, 1.01, ‘0.5, 0.5‘, Q,}.O, 1.01, ¥O.5, ().51, 3 )b

2 cat 2 catl 1 cat 2 con 2 con 1 con

Response variable: Y, generated from a Tweedie GLM framework,

y; ~ Tweedie(u;, ¢, £),

with the log link function g(u;) = log(i;) = X;f, the dispersion parameter ¢ = 2,
and the variance power parameter £ = 1.7.
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Result - density plots
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Result - heatmap
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Concluding remarks

- Motivation:

- The default CART is insufficient to handle insurance datasets that contains a high
percentage of zeros.

- Modification:

- The WSSE tree and the Canberra tree is more effective at separating zero claims
from nonzero claims observations than the default CART.

+ Simulation Study:

- The WSSE tree and the Canberra tree offer better prediction performance than the
default CART.

- Details about the implementation are given in the paper.
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Q&A

Thank you for your attention!
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