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The ”Ant on a Rubber Rope” Paradox
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Abstract

We clarify and generalize the ant on a rubber rope paradox, which is a math-
ematical puzzle with a solution that appears counterintuitive. In this paper,
we show that the ant can still reach the end of the rope even if we consider
the step length of the ant and stretching length of the rubber rope as random
variables.
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1. Introduction

The ant on a rubber rope paradox is usually expressed as (see, for in-
stance, [1] or [2]): An ant is at the left endpoint of a rubber rope, which is 1
kilometre long and the ant crawls along the rope at a steady pace of 1 cen-

timetre per second. After the first second, the rubber rope stretches uniformly

to 2 kilometres instantly. After the next second, it stretches to 3 kilometres,

and so on. The question is, will the ant ever reach the right endpoint of the

rubber rope?

Surprisingly, the answer to this paradox is ”Yes”. In the beginning, we
should know that the ant moves with the rope when the rope is stretching.
Now, we can analyse this paradox by measuring the fraction of the rope the
ant covers after each second. When the sum of these fractions is 1, the ant
has come to the right endpoint of the rope.

Initially, the rubber rope is 1 kilometre long and the ant moves 1 centime-
tre forward. This means that at the end of the first second, the ant has trav-

elled
1

100, 000
times of the rubber rope’s length of 1 kilometre. Meanwhile,

after the first second, the rubber rope stretches uniformly to 2 kilometres
immediately. Then the ant crawls another centimetre after the next second.
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That is to say, the ant has gone an additional
1

200, 000
times of the rope’s

new length of 2 kilometres. By repeating this process m times, after the mth
second, the ant’s progress can be expressed as a fraction of the entire rubber
rope, which is

1

100, 000

(

1

1
+

1

2
+ ...+

1

m

)

. (1)

The equation (1) is a partial sum of the Harmonic series, which can be
made as large as we desire. Therefore, the ant will complete the journey to
the right endpoint of the rubber rope.

Now, we consider the case that both the movements of the ant and
the increments of the rubber rope are random. Specifically, let X0, X1,...
be positive, independent, and identically distributed random variables with
EXi = µX > 0. Let L1, L2,... be positive, independent, and identically
distributed random variables with ELi = µL < ∞. Let l0 be a positive con-
stant. From the very beginning, the length of the rope is l0 units. At the first
second, the ant, which is at the left endpoint of the rope, starts to move X0

units. At the end of the first second, the rope uniformly stretches L1 units
to l0 + L1 units immediately. In the next second, the ant moves another X1

units. Again, at the end of the second second, the rope uniformly stretches
another L2 units to l0 + L1 + L2 units. If this continues, will the ant still
reach the other end of the rope? Astonishingly, the answer is still ”Yes”.

Theorem 1 In the stochastic model of the ant on a rubber rope, the ant
can still reach the other end of the rope almost surely.

In Section 2, we will establish two lemmas and then use them to prove
Theorem 1.

2. Two Lemmas

To prove Theorem 1, we need the following Lemmas 1 and 2.
Lemma 1 An ant is originally at the left endpoint of a rubber rope of length
l0 units. At the ith second the ant moves along the rope at a pace of xi−1

units, and then the rubber rope uniformly stretches li units instantly. If, at
the mth second, the ant still does not reach the right endpoint of the rope,
then the ant’s progress can be expressed as a fraction of the entire rubber
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rope, which is

x0

l0
+

x1

l0 + l1
+

x2

l0 + l1 + l2
+ ... +

xm−1

l0 + l1 + ...+ lm−1
. (2)

This lemma is not difficult to prove by induction argument. The key
point is to note that the ratio of length of the ant’s progress to that of the
rope remains unchanged after the rope uniformly stretching.

Lemma 2 Let X0, X1,... be positive, independent, and identically dis-
tributed random variables with EXi = µX > 0. Let L1, L2,... be positive,
independent, and identically distributed random variables with ELi = µL <

∞. Let l0 be a positive constant. Then

X0

l0
+

X1

l0 + L1
+

X2

l0 + L1 + L2
+ ... = ∞ (3)

almost surely.

Proof (Proof). Let Ω be the sample space. By strong law of large num-
bers there exists Ω0 with P (Ω0) = 1, such that for each ω ∈ Ω0,

L1(ω) + ... + Ln(ω)

n
−→ µL, (4)

and
X1(ω) + ...+Xn(ω)

n
−→ µX , (5)

when n goes to ∞. This implies that for each ω ∈ Ω0, and any given ǫ > 0,
we can choose an N ∈ N such that

∣

∣

∣

∣

l0 + L1(ω) + ...+ Ln(ω)

n
− µL

∣

∣

∣

∣

< ǫ, (6)

and
∣

∣

∣

∣

X1(ω) + ...+Xn(ω)

n
− µX

∣

∣

∣

∣

< ǫ, (7)

if n > N . To simplify our notation, denote Li(ω) and Xi(ω) by li and xi,
respectively.
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Now, for each i ∈ N, we have, according to (7),

∣

∣

∣

∣

x(i−1)N+1 + ...+ xiN

N
− µX

∣

∣

∣

∣

=

∣

∣

∣

∣

x1 + ... + xiN

N
−

x1 + ...+ x(i−1)N

N
− µX

∣

∣

∣

∣

=

∣

∣

∣

∣

i
x1 + ...+ xiN

iN
− iµX + (i− 1)µX − (i− 1)

x1 + ... + x(i−1)N

(i− 1)N

∣

∣

∣

∣

6 i

∣

∣

∣

∣

x1 + ... + xiN

iN
− µX

∣

∣

∣

∣

+ (i− 1)

∣

∣

∣

∣

x1 + ...+ x(i−1)N

(i− 1)N
− µX

∣

∣

∣

∣

< iǫ+ (i− 1)ǫ = (2i− 1)ǫ. (8)

Consequently, for any fixed m ∈ N, we can use (6) and (8) to yield that

x0

l0
+

x1

l0 + l1
+

x2

l0 + l1 + l2
+ ...

>

N
∑

i=1

xi

l0 + ...+ li
+

2N
∑

i=N+1

xi

l0 + ...+ li
+ ...+

mN
∑

i=(m−1)N+1

xi

l0 + ...+ li

>

N
∑

i=1

xi

l0 + ...+ lN
+

2N
∑

i=N+1

xi

l0 + ...+ l2N
+ ... +

mN
∑

i=(m−1)N+1

xi

l0 + ... + lmN

=

x1 + ...+ xN

N
l0 + l1 + ... + lN

N

+
1

2

xN+1 + ...+ x2N

N
l0 + l1 + ...+ l2N

2N

+ ...+
1

m

x(m−1)N+1 + ... + xmN

N
l0 + l1 + ...+ lmN

mN

>
µX − ǫ

µL + ǫ
+

1

2

µX − 3ǫ

µL + ǫ
+ ...+

1

m

µX − (2m− 1)ǫ

µL + ǫ
→

µX

µL

(

1 +
1

2
+ ...+

1

m

)

as ǫ → 0+.

4



Because the harmonic series diverges to ∞, we conclude that

X0

l0
+

X1

l0 + L1
+

X2

l0 + L1 + L2
+ ... = ∞

almost surely.

Now, we can prove Theorem 1 as follows.

Proof (Proof of Theorem 1). Using the notations as in Lemma 2, we
define

T = min

{

n

∣

∣

∣

∣

∣

X0

l0
+

X1

l0 + L1

+ ...+
Xn−1

l0 + L1 + L2 + ...+ Ln−1

> 1

}

.

In view of Lemma 1, T is just the time (in seconds) when the ant reaches
the right endpoint of the rubber rope. Here we use the convention that
min ∅ = ∞. Now, Lemma 2 tells that T < ∞ almost surely, which completes
the proof.
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