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Abstract: The asymptotic wave speed for FKPP type reaction-diffusion equations on a
class of infinite randommetric trees are considered. We show that a travelling wavefront
emerges, provided that the reaction rate is large enough. The wavefront travels at a speed
that can be quantified via a variational formula involving the random branching degrees
�d and the random branch lengths �� of the tree T �d,��. This speed is slower than that of the

same equation on the real lineR, and we estimate this slow down in terms of �d and ��. The
key idea is to project the Brownian motion on the tree onto a one-dimensional axis along
the direction of thewave propagation. The projected process is amulti-skewedBrownian
motion, introduced by Ramirez [31], with skewness and interface sets that encode the
metric structure ( �d, ��) of the tree. Combined with analytic arguments based on the
Feynman-Kac formula, this idea connects our analysis of the wavefront propagation to
the large deviations principle (LDP) of the multi-skewed Brownian motion with random
skewness and random interface set. Our LDP analysis involves delicate estimates for an
infinite product of 2× 2 random matrices parametrized by �d and �� and for hitting times
of a random walk in random environment.
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1. Introduction

The FKPP equation, named after Fisher [11] and Kolmogorov, Petrovski, and Piskunov
[30], is one of the simplest reaction-diffusion equation which can exhibit traveling
wave solutions. This equation arises in ecology, population biology, chemical reactions,
plasma physics and other disciplines. It describes the dynamics of a certain quantity
u(t, x) at time t and location x , written as

⎧
⎨

⎩

∂u

∂t
(t, x) = 1

2

∂2u

∂x2
(t, x) + f

(
u(t, x)

)
,

u(0, x) = u0(x) ,

(1.1)

where the reaction function f (u) = βu(1 − u) for some constant β > 0 which will be
called the reaction rate throughout this paper.

The asymptotic speed of the wavefront formed by (1.1) can be defined as a positive
real number α∗ > 0 such that for any h > 0,

lim
t→∞ sup

x>(α∗+h)t
u(t, x) = 0 and lim

t→∞ inf
x<(α∗−h)t

u(t, x) = 1 . (1.2)

It is well known from [11] and [30] that on the real line R, for step-like initial data
including the Heaviside function u0(x) = 1x≤0, the solution to (1.1) forms a wavefront
that propagates through the real line R with asymptotic speed

√
2β 1. Freidlin in [13]

presents an elegant argument to prove this statement that uses the Feynman-Kac for-
mula to connect the asymptotic speed with the large deviations principle (LDP) of the
Brownian motion on the real line.

For simplicity and to make the arguments more intuitive, we focus on this classical
case with diffusion coefficient D = 1 throughout this paper, but on trees rather than
on R. By the same arguments with simple modifications, our results can readily be
extended to the general FKPP-type case, in which f is a continuous function on [0, 1],
f (0) = f (1) = 0, f ′(0) = supu∈(0,1) f (u)/u and f (u) > 0 for u ∈ (0, 1). We expect
the results will be the same when β is replaced by f ′(0), and the asymptotic speed will
be multiplied by

√
D.

While asymptotic speed of FKPPwavefront on the real line is well studied, much less
is known about the formation and the speed of wave propagations in different environ-
ments such as a network. These are challenging problems because the topological and
metric structure of the underlying space interacts with the diffusion-reactionmechanism.

Nonetheless, it is of both practical and theoretical interests to consider equation
(1.1) on geometric structures other than a line. Such equations arise as scaling limits

1 If the diffusion term
1

2

∂2u

∂x2
in the equation (1.1) becomes

D

2

∂2u

∂x2
for a general diffusion constant D > 0,

then it is easy to see from a spacial rescaling x → x√
D

that the wave speed is
√
2Dβ. Thus throughout the

paper we stick to the case D = 1.
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Fig. 1. Symmetric �d-regular tree with branch lengths ��, denoted by T �d,��, with d0 = 2, d1 = 3 and d2 = 4.
The projection π : T �d,�� → R maps x to the signed distance on T from x to the root ρ. Let (Bt )t≥0 be a
Brownian motion on T �d,�� and define Yt = π(Bt ). Then the projected process Y = (Yt )t≥0 is a multi-skewed
Brownian motion with skewness (see Definition 5) 2/3 at �0 and skewness 1/3 at −�0

of reaction diffusion-equations in two-dimensional domains (see [4,5,16,18]) and of
interacting particle systems (see [9,10]), which provide descriptions of the effective
dynamics of much more complex systems. For example, in [18] the authors considered
a reaction-diffusion equation on a narrow random channel. The channel consists of a
main track and random “wings” added to it. As the channel width becomes thin, it
converges to a tree-like structure with many short branching edges added to the real line.
Such a tree is in a sense a “noisy” real line because it is the real line randomly adding
short edges to it. Making use of LDP for diffusion processes in random environment,
the authors of [18] derived a formula for the wave speed in this case.

Our results. In this work, we consider the propagation of waves given by the FKPP
equation (1.1) on an infinite random tree T �d,�� that is called symmetric �d regular with

branch lengths �� (the precise definitions are given in Sect. 2.1). Here the random branch-
ing degrees �d = (di )i∈Z+ (we set Z+ = {i ∈ Z, i ≥ 0}) is such that 2 d0 = 2 and (di )i≥1
is an i.i.d sequence of bounded positive integers greater or equal than 2, such that all
vertices of T �d,�� at generation i have degrees equal to di (the root ρ is the node at gen-

eration 0). The random branch lengths �� = (�i )i∈Z+ is an i.i.d. sequence of positive real
numbers that are positively bounded from above and from below, such that the edges of
T �d,�� between generations i and i + 1 are all of length equal to �i . A typical example of
T �d,�� is shown in the upper part of Fig. 1.

This class of random trees includes many random trees of interest, and in particular
the deterministic d-regular tree for d > 2 with branch length � ∈ (0,∞). The latter,
called the constant-(d, �) tree in this paper, is an illuminating special case in which all
{�i }i≥0 are the same constant � and all {di }i≥1 are equal to the same constant d > 2. For
this particular case, if d = 2 we further obtain the degenerate case T = R.

Unlike the real line R, the random tree T �d,�� is in general a one-dimensional metric
space with singularities at its vertices (nodes at different generations). Thus equation
(1.1), when considered on the tree T �d,�� , should also be equipped with boundary condi-
tions at the vertices. Here we put symmetric gluing conditions at each of the vertices of
the tree T �d,�� , so that the sum of the outward derivatives of the solution u at each vertex

2 For simplicity of presentation we assume d0 = 2. However, our arguments work for all cases when d0 ≥ 2
is an arbitrary fixed integer without affecting the wave speed.



W.-T. L. Fan et al.

of the tree is equal to 0. This specifies that the flow-in equals flow-out of mass at each
vertex.

We also impose a step-like initial condition u(0, x) = u0(x) = 1U0(x) such that U0
is a symmetric subset of the set of all of the d0 edges attached to the root ρ. Intuitively,
these symmetric initial and boundary conditions will guarantee that as time t evolves,
the solution u(t, x) will also be symmetric with respect to all edges of the tree x ∈ T �d,��
that are between the same two consecutive generations. In this way, following (1.2), we
say that a quantity c∗ > 0 is the asymptotic speed of the wavefront formed by (1.1) on
the tree T �d,�� if for any h1 > 0 and c∗ > h2 > 0,

lim
t→∞ sup

dT(x,ρ)>(c∗+h1)t
u(t, x) = 0 and lim

t→∞ inf
dT(x,ρ)<(c∗−h2)t

u(t, x) = 1 . (1.3)

Here dT(x, ρ) denotes the geodesic distance of the point x ∈ T �d,�� to the root ρ, i.e., it
is the length of the shortest path from x to ρ along the tree T �d,��.

The main result in this paper can be stated roughly as below; the full statement is
encapsulated in Theorems 6 and 7.

Main Result. Let T �d,�� be the random tree equipped with the aforementioned initial
and boundary conditions. There exists βc ∈ (0,∞) such that for all β ∈ (βc,∞), as
t → ∞, the solution {u(t, x) : t ∈ [0,∞), x ∈ T �d,��} of equation (1.1) on T �d,�� forms a
wavefront on the tree. The wavefront travels with an asymptotic speed that is less than
or equal to

√
2β, with equality holds if and only if the tree degenerates to the real line

R.
The above result is a direct consequence of Lemmas 2.3, 2.4 and Theorems 6, 7.
It is not clear a-priori whether a wavefront exists for all β > 0, because intuitively

branchings of the tree can destroy pattern formation by spreading things out. This is in
contrast with FKPP on R. Our result guarantees that the wavefront sustains, provided
that β is large enough relative to the topological and the metric structure of the tree. The
quantity βc will be given by the right hand side of (6.4) in Sect. 6. For the constant-(d, �)

tree mentioned above, βc = d − 2

� d
ln(d −1) increases to infinity at the asymptotic order

∼ O
(
ln d

�

)

as d increases to infinity. See Corollary 7.2 and Fig. 4. Note that this βc

vanishes when d = 2 (i.e. the tree is R) or when � → ∞. Technically speaking, the
lower bound of β is due to two reasons: to ensure that we can use the LDP and that there
is a unique wavefront; see Remark 6.1.

The slowdownof thewave speed due to branching can also be heuristically explained:
the density of the mass concentration described by u spreads out to di −1 many edges as
it goes pass a vertex of degree di (Fig. 1). In Remark 7.1, we provided a further intuitive
explanation of this slow down effect, which, roughly speaking, can be attributed to
the interaction between the “drift effect” caused by branching and the large deviations
principle. For the constant-(d, �) tree, the asymptotic speed is given by

c∗ = inf
λ≥0

λ + β

√
2λ +

1

�
ln

(
4p

1 + γ 2 −√
(γ 2 − 1)2 + 4(2p − 1)2γ 2

) ∈
(
0,
√
2β

]
,

(1.4)
where p = (d − 1)/d and γ := e�

√
2λ. The upper bound

√
2β is attained if and only if

d = 2 (i.e. the tree degenerates to R). See Corollary 7.2 and Fig. 4.
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To prove our main result, we start from the classical idea (like the one presented in
Freidlin [13]) which connects the solution u(t, x) of the FKPP equation (1.1) with the
functional integration over the trajectories of an underlying stochastic process, and we
then make use of the large deviations principle (LDP) of that process. Indeed, for the
classical FKPP case when x ∈ R, the solution u(t, x) to (1.1) can be represented via
the well-known Feynman-Kac formula as the solution of an integral equation over the
trajectories of a standard Brownian motion on R. The result that the asymptotic wave
speed is given by α∗ = √

2β then follows from LDP for the Brownian motion on R.
Similarly in our case, when u(t, x) to (1.1) is considered on the tree (i.e. x ∈ T �d,��), the
underlying stochastic process in the Feynman-Kac formula is replaced by a Brownian
motion Bt on the tree T �d,��. The Brownian motion Bt on the tree behaves as a standard
1-dimensional Brownian motion in the interior of the edges, and at each vertex of the
tree, it chooses randomly and with equal probability to enter one of the edges adjacent
to that vertex.

Since d0 = 2, we can associate any point x ∈ T �d,�� with a unique horizontal coordi-
nate y ∈ R which is the signed distance on T from x to the root ρ (i.e., y = ±dT(x, ρ)

with + sign when x belongs to the right branch and − sign when x belongs to the left
branch), as illustrated in Fig. 1. We denote by π : T �d,�� → R to be the projection map
sending x to its horizontal coordinate y. Due to the symmetric behavior of the Brownian
motion Bt at each vertex of the tree, one can show (see Sect. 2.3 and in particular Lemma
2.3) that the solution u(t, x) = v(t, π(x)), x ∈ T �d,�� . Here v(t, y), y ∈ R is the solu-
tion of an integral equation, given by the Feyman-Kac formula, to which the underlying
stochastic process is given by the projection Yt of Bt onto R: Yt = π(Bt ). Notice that,
when a Brownian motion on T �d,�� is at a vertex with degree di that is on the right of the
root, the probability that it moves further away from the root (i.e. move to the right) in

the next instance is
di − 1

di
. Thus the process Yt behaves like a Brownian motion except

at its interface points (barriers), i.e., those points on R that are the projections under π

of the vertices of the tree T �d,�� . At these interface points, it moves to the right or left

with respective probabilities pi = di − 1

di
and 1− pi (see the lower part of Fig. 1). Such

a real-valued process Yt , introduced in [31], is called a multi–skewed Brownian motion;
precise definitions are in Sect. 3.

Our LDP of the multi-skewed Brownian motion Yt (see Theorems 4, 5 in Sect. 5)
in general follows the method of LDP for random processes in random environment in
[6,36], [12,28,29, Chapter 7]. However, these existing results do not apply directly to
Y or the embedded random walk at the interface points.

In fact, such LDP analysis for Y turns out to be remarkably delicate and interesting. It
first involves a calculation of the Lyapunov exponent given by the Laplace transform of
certain hitting time of themulti-skewedBrownianmotionYt (see Theorem3 and Sect. 4).
Interestingly, such a quantity is calculated by making use of some existence results of
an infinite product of 2× 2 random matrices parameterized by �d, �� (see Proposition 4.1
and Theorem 2). This allows us to obtain a variational formula for the wave speed in
terms of �d, �� (see Theorem 7 in Sect. 7). This variational formula enables us to show
that the speed of the wavefront on T �d,�� is slower than the speed of the standard FKPP

equation on R, and we can estimate this slow down in terms of �d and ��.
Due to the random tree structure of T �d,��, the multi-skewed process Yt behaves as a

biased random walk at its interface points. The biasedness of Yt at the interface points
are away from the root, because di > 2. When d0 = 2, one can think of the effects of
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such biasedness as adding positive and negative drifts to a standard Brownian motion
on R. These “drift-like skewnesses” result in some interesting behaviors of the hitting
time of Yt (see Sect. 3.1), and they make the LDP of Yt substantially different from the
one for the standard Brownian motion. Intuitively, such drift effects make Yt harder to
come back to a neighborhood of the origin, so that the LDP has a lower rate function
(action functional).Moreover, there is a non-negative finite quantity at which the Laplace
transform of the hitting time of the multi-skewed Brownian motion Yt jumps to infinity
(see Theorem 1). A more careful analysis will demonstrate that the LDP will only hold
in a particular regime of the parameters (see Theorems 4, 5). Except for these features,
the exact shape of the LDP rate function may exhaust various different possibilities (see
Fig. 3). Correspondingly, the analysis of the wavefront propagation only works in the
regime when the reaction rate β is larger than some value βc. To the best of the authors’
knowledge, except for a short remark in [12, Section 7.6, Remark 4, pp.524-525] that
mentions the case when there is a drift, this is the first work that carefully addresses such
random drift phenomenon for the wavefront propagation of FKPP equations in random
environments via probabilistic method. The particular intricacy in our work is that we
are not working with a simple random drift that can be offset by a moving frame, but a
more complicated “drift effect” caused by the multi-skewness.
Discussion. In contrast with FKPP onR, it is not completely clear what happens to FKPP
on trees when the reaction rate β > 0 is smaller than the critical value βc mentioned in
the main result above.

Our approach is based on the LDP analysis for processes in random environments,
which only works in a certain regime of the parameters (see Theorems 4, 5). The LDP
analysis that works for processes in random environments can only be applied to the
case when the reaction rate β is larger than βc. Moreover, with the LDP rate function at
hand this Assumption also guarantees the uniqueness of wavespeed in equation (6.1).
However, such approach does not exclude the possibility that there are other methods
that may work when β is small. We leave this issue for future investigation.

On the other hand, if the tree T �d,�� is not random but has constant branching lengths
and branch degrees, we can employ a more straightforward method (based on the eigen-
function of an elliptic operator) to obtain the LDP (see [12, Chapter 7, Section 7.3])
rather than relying on the hitting time analysis for the multi-skewed BM in a random
environment (like what we have in Theorem 4), so that we may be able to analyze the
behavior of (1.1) on trees for small values of β. This issue will be left to the theme of
another paper.

It is also worth noticing that our multi-skewed process Yt here is different from the
process Yt introduced in [16] in that the latter process is ergodic with respect to both
positive and negative shifts. In our case, the behavior of our multi-skewed Brownian
motion Yt is symmetric with respect to the origin. This leads to the fact that the wave
speed is the same along positive and negative axes (see Theorem 6) as well as a few
technical differences in the proof of the LDP and the wave propagation (see Sects. 5 and
6).

Reaction-diffusion systems on geometric structures that have branching and singular-
ities have long been attracting interest in the scientific community. For example, a lot of
physics literature discuss reaction-diffusion equation on fractals such as the Sierpinski
gasket and the Koch curve. In [2,3,27], approximate expressions for the wavespeeds on
fractal media have been obtained by physical intuition. See the Campos-Méndez-Fort
formula mentioned in the numerical work [35, equation (4)]. The wave equation is also
considered on fractal tree in the simulation work [24] as a model of sound propagation
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in the human lung. However, besides all these efforts, there have been very few works
that discuss these problems at the level of absolute mathematically rigor (except [18]
that discusses reaction-diffusion equation on a particular type of infinite tree). Our work
puts forward one more step in this direction and our wavespeed formulas are new.

Paper outline. Section 2 is dedicated to preliminaries, including the definitions and
assumptions of the random tree and the precise statement of the FKPP equation and
wavefront speed on the tree, as well as the basic idea of projecting the Brownian motion
on the tree to a multi–skewed process Y on R. Section 3 contains some hitting time
estimates for Y that will be useful in later sections. Section 4 provides a calculation
and an analysis for the auxiliary functions used in proving the LDP, that are based
on existence and properties of the limit of an infinite product of 2 × 2 random matrices
parametrized by �d and ��. In Sects. 5 and 6we analyze theLDPofYt and the corresponding
wave propagation respectively. Finally in Sect. 7 we provide a variational formula for
computing the wave speed that shows the slow down of the wave on T �d,�� with some
concrete calculations.

2. Preliminaries

2.1. The Structure of the Random Tree. The class of infinite metric trees is described in
the following and in Fig. 1.

Definition 1 (symmetric �d-regular tree). Let �d := (dn)n∈Z+ be a sequence of positive
integers with d0 = 2. A symmetric �d-regular treeT �d is a rooted tree such that all vertices
at generation n have the same degree dn (the root is the node at generation 0).

In the above, the assumption that d0 = 2 is only introduced for the sake of simplifying
the proof and to visualize the geometry, and the arguments in this paper can easily
be extended to the case when d0 > 2, without affecting the asymptotic speed of the
wavefront (see Theorem 7).

As an example, suppose there is a positive integer d such that dn = d for all n ≥ 1.
Then we have two identical d-regular trees attaching to the root.

We put the following assumption on �d:
Assumption 1 (bounded branching degrees). We assume that there exist some positive
integer d ≥ 2 such that

2 ≤ dn ≤ d , (2.1)

for all n ∈ Z+, and d0 = 2.

Definition 2 (symmetric �d-regular tree with branch lengths ��). Denote by T := T �d,�� the
symmetric �d-regular tree with branch lengths ��, that is, the �d-regular tree whose edges
between generations n and n + 1 are all of length equal to �n . See the tree in the upper
part of Fig. 1. We denote by V the vertex set of T and T̊ := T \ V to be its interior.

We put the following assumption on ��:
Assumption 2 (bounded branch lengths). We assume that there exist some 0 < � < � <

∞ such that
0 < � ≤ �n ≤ � < ∞ , (2.2)

for all n ∈ Z+.
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Definition 3 (distance on T). The tree T = T �d,�� is made into a metric space equipped
with the metric dT: for any two points x1 and x2 on T belonging to the same edge of
T we define their distance dT(x1, x2) to be the length of the interval between them;
for x1 and x2 belonging to different edges of T it is defined as the geodesic distance
dT(x1, x2) = min(dT(x1, O j1) + dT(O j1, O j2) + ... + dT(O jl , x2)), where the minimum
is taken over all chains of vertices O ji ∈ V connecting the points x1 and x2.

We think ofT as a continuous object, where each edge is a line segment. Asmentioned
in the introduction and illustrated in Fig. 1, each point x ∈ T has a unique horizontal
coordinate π(x) ∈ R which is the signed distance on T from x to the root.

Our probability space (
, S, P) for the randomness in the tree T �d,�� is defined as

follows. The sample space 
 := N
Z+ × (0,∞)Z+ has generic sample point ( �d, ��) and

is equipped with its Borel σ -algebra S. We then assume the following

Assumption 3. (i.i.d and mutually independent branching degrees and branch lengths
sequences). Under P, {di }i≥1 and {�i }i≥0 are two mutually independent sequences of
i.i.d. random variables such that almost surely Assumptions 1 and 2 hold.

Since we will be considering Brownian motion on the treeT �d,��, so that the pair ( �d, ��)
determines the environment under which the Brownian motion moves, we will also refer
to the measure P as the one that governs the random environment.

Assumption 3 includes many random trees of interest. For example, {di }i≥1 can be
i.i.d. uniform on a finite integer set such as {2, 3, 2019}. The deterministic d-regular tree
with branch length �, called constant-(d, �) tree in this paper, is the case when all {�i }i≥0
are equal to a constant � and all {di }i≥1 are equal to a constant d.

2.2. FKPP Equation and its Wavefront Propagation. Our main results are about the
speed of wave propagation, as t → ∞, for the FKPP equation on the random tree T �d,��
under P. Explicitly, we consider the FKPP equation

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
(t, x) = 1

2

∂2u

∂x2
+ βu(1 − u) , (t, x) ∈ (0,∞) × T̊ �d,�� ,

∇u(t, v) = 0 , (t, v) ∈ (0,∞) × V ,

u(0, x) = u0(x) , x ∈ T̊ �d,�� ,

(2.3)

where V is the vertex set of T �d,�� and T̊ �d,�� := T �d,�� \ V is the interior of the tree. The
condition ∇u(t, v) = 0 is called the symmetric gluing condition, which specifies that
the flow-in equals flow-out of mass at each vertex. Specifically, ∇ f (v) is the sum of the
outward derivatives of function f at vertex v, i.e., ∇ f (v) = ∑

i ∂i f (v) in which ∂i is
the outward derivative along the i-th edge attached to the vertex v. The initial condition
u0(x) = 1(−δ,δ)(x) for some small 0 < δ < �, so it is 1 on part of the two edges
connecting to the root and is 0 elsewhere.

Equation (2.3) first appeared explicitly as scaling limits of interacting particle systems
in [10]. Following [12,18], we define a generalized solution of (2.3)with initial condition
u0 to be a measurable function u that solves the integral equation

u(t, x) = E ( �d,��)
x

[
u0(Bt ) exp

{
β

∫ t

0

(
1 − u(t − s, Bs)

)
ds
}]

, (2.4)
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where (Bt )t≥0 is the Brownian motion on the tree T �d,�� , and E ( �d,��)
x is the mathematical

expectation with respect to (Bt )t≥0 starting at x , under a fixed tree T �d,��. Notice that
since T �d,�� is random under P, the process Bt is indeed moving in a random environment
distributed as P.

The process (Bt )t≥0 is the Markov process on T �d,�� associated with an infinitesimal
generator A, that is given by the Laplace operator with gluing boundary conditions.
Within each edge of the tree T �d,�� the infinitesimal generator A of the process Bt is given

by
1

2

d2

dx2
, in which

d

dx
is the derivative along that edge. The domain of definition D(A)

of the operator A is given by functions f that are twice continuously differentiable inside
each edge of the tree T �d,��, and satisfy the gluing condition ∇ f (v) = 0 at each vertex v

of the tree T �d,��. This notion of solution (2.4) is motivated by the Feynman-Kac formula.
The process Bt considered here is a typical example of Markov processes on manifolds
with singularity (such as graphs, see [14,15,17,19,21–23]).

Let us denote by B(S; [0, 1]) (respectively C(S; [0, 1])) the space of bounded Borel
measurable (respectively continuous) functions on any metric space S taking values
in [0, 1], equipped with the uniform norm ‖ • ‖∞. Based on the contraction mapping
principle, as detailed in [12, Section 3, Chapter 5] and [18, Theorem 3], one immediately
obtains Lemma 2.1 below, which ensures the well-posedness of equation (2.3).

Lemma 2.1. Let �d and �� be deterministic sequences that satisfy (2.1) and (2.2) respec-
tively and let T := T �d,�� be a fixed deterministic tree. Suppose the initial condition
u0 ∈ B(T; [0, 1]). Then there exists a unique generalized solution u of (2.3) with
u(t, •) ∈ C(T; [0, 1]) for all t > 0.

Due to our symmetric construction of the initial condition and the symmetric nature of
the Brownian motion Bt on T �d,�� , the solution u to Eq. (2.3) satisfies u(t, x1) = u(t, x2)
whenever d(x1, ρ) = d(x2, ρ). Such a fact is actually a consequence of Lemma 2.3
below. Thus we can give the following definition of the speed of the wavefront:

Definition 4. A positive real number c∗ > 0 is called the asymptotic speed for the
wavefont of (2.3) if for any h1 > 0 and c∗ > h2 > 0 we have

lim
t→∞ sup

dT(x,ρ)>(c∗+h1)t
u(t, x) = 0 , lim

t→∞ inf
dT(x,ρ)<(c∗−h2)t

u(t, x) = 1 ,

where u(t, x) is the generalized solution to (2.4).

In a nutshell, the problem studied in this work can be formally stated as follows:

Statement of the Problem.For what values of the reaction rate β > 0 does the equation
(2.3) admits a wavefront, as t → ∞, that satisfies Definition 4? When the wavefront
exists, can we analyze its asymptotic speed?

This problem is answered already in the introductory section, and the rest of the paper
is dedicated to solving it.

2.3. The Basic Idea of Projection. Our key observation is as follows: when a Brownian
motion on T �d,�� is at a vertex with degree di that is on the right of the root (see Fig. 1),
the probability that it moves further away from the root (i.e. move to the right) in the

next instance is pi = di − 1

di
.
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Fig. 2. Connection with multi-skewed Brownian motion via projection π . [Vertical double-arrow] The
top-left part shows the graph of a solution u of (1.1) (the wavefront) on half of a tree, the other half of the tree
is symmetric. The wave will propagate to the right (dashed arrows) along all edges of the tree. The bottom left
shows an arbitrary semi-infinite branch. Knowing the wave v on it determines the wave u on the entire tree, and
vice versa, as described in Lemma 2.3. This is because the travelling waves on any two semi-infinite branches
are the same. This equivalence relation is symbolised by the vertical double-arrow. [Horizontal double-arrows]
Feynman-Kac formula allows us to write the solutions of reaction diffusion equations in terms of diffusion
processes, giving (2.4) in the upper horizontal double-arrow and (2.6) in the lower horizontal double-arrow.
[Vertical one-sided arrow] On the right, π is the projection that maps the Brownian motion on the tree T �d,��
to a multi-skewed process Y on R

Therefore, instead of analyzing the large deviation behaviors of the Brownian motion
Bt on T �d,��, we do so for the projection of Bt onto a one-dimensional axis along the
direction of the wave propagation. The projected process is the multi-skewed Brownian
motion Yt ∈ R introduced in [31]. LDP of Y then leads to the asymptotic speed of a wave
v travelling on R, via the Feynman-Kac formula. Our setting, specifically the collection
of trees and the initial condition u(0, x) = u0(x) = 1(−δ,δ)(x), guarantees that the
asymptotic speed of v is the same as that of the solution u of the reaction-diffusion
equation (1.1). Figure 2 illustrates this idea.

The interface set �z = (zn)n∈Z is such that z0 = 0, zi+1 − zi = �i and z−i = −zi for
i ≥ 0. Clearly zn = ∑n−1

i=0 �i = −z−n for n ≥ 1. Assumption 2 ensures that �z := {zi }i∈Z
has no accumulation point.

The trajectories of process Y = (Yt )t≥0 behave like Brownian motion onR\�z, and at
point zi > 0, the probability of hitting zi +ε before hitting zi −ε is equal to pi := di − 1

di
as ε is tending to zero; see [31, Theorem 1.2]. This property of Y leads to the following
lemma. We will formally define process Y in Sect. 3, Definition 5.

Lemma 2.2. π(B) = Y in distribution in C(R+,R).

Based on Lemmas 2.2, 2.3 below tells us that we can recover function u from its
restriction v on a single infinite branch, and that such a restriction v also enjoys a
Feynman-Kac formula involving path integrals for the multi-skewed Brownian motion

Y . In the below P( �d,��)
y , E ( �d,��)

y are the probabilities and the mathematical expectation
with respect to (Yt )t≥0 starting at y, under a given tree T �d,��.

Lemma 2.3. Let �d and �� be deterministic sequences that satisfy (2.1) and (2.2) respec-
tively and let T := T �d,�� be a fixed deterministic tree. Suppose the initial condition
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u0 ∈ B(T; [0, 1]) satisfies u0(x1) = u0(x2) whenever π(x1) = π(x2). Then

u(t, x) = v(t, π(x)) for all (t, x) ∈ R+ × T, (2.5)

where v is the unique element in B([0,∞) × R; [0, 1]) such that

v(t, y) = E ( �d,��)
y

[
v0(Yt ) exp

{
β

∫ t

0

(
1 − v(t − s, Ys)

)
ds
}]

, (2.6)

the process Y = (Yt )t≥0 is the multi-skewed Brownian Motion in Definition 5 and the
function v0 ∈ B(R; [0, 1]) is defined by v0◦π = u0. Furthermore, v(t, ·) ∈ C(R; [0, 1])
for all t > 0.

Proof. Similar to the proof of the Theorem 3.1 [18], from the contraction mapping
theorem on the Banach space BT := B([0, T ] × R; [0, 1]) with the uniform norm, for
the operator � : BT → BT defined by

�( f )(t, y) := E ( �d,��)
y

[
u0(Yt ) exp

{
β

∫ t

0

(
1 − f (t − s, Ys)

)
ds
}]

, f ∈ BT ,

where T ∈ (0,∞) is small enough, and then by extending to time intervals of arbitrary
length, it follows that there is a unique v ∈ B([0,∞) × R; [0, 1]) satisfying (2.6) on
[0,∞).

To check the details, for all 0 < t ≤ T , we have

|�( f )(t, y) − �(g)(t, y)| =
∣
∣
∣
∣E

( �d,��)
y

[
u0(Yt ) exp

{
β

∫ t

0

(
1 − f (t − s, Ys)

)
ds
}]

−E ( �d,��)
y

[
u0(Yt ) exp

{
β

∫ t

0

(
1 − g(t − s, Ys)

)
ds
}]∣∣
∣
∣

≤ ‖u0‖∞
∣
∣
∣E ( �d,��)

y

[
exp

{
β

∫ t

0

(
1 − f (t − s, Ys)

)
ds
}

− exp
{
β

∫ t

0

(
1 − g(t − s, Ys)

)
ds
}]∣
∣
∣

≤ ‖u0‖∞β exp(βt)t‖ f − g‖∞ (by Mean Value Theorem) ,

which is strictly less than ‖ f −g‖∞ for T small enough. Nowwe can extend the solution
to intervals [T, 2T ], . . . , [(n − 1)T, nT ] for n ∈ Z. The continuity of v will then follow
from Lemma 2.1 and (2.5).

It remains to prove (2.5). By the assumption on the initial condition, as well as the
symmetry of T �d,�� with respect to the horizontal direction at each bifurcation of the tree
T �d,�� (see Fig. 1), there exists a function w : R → [0, 1] such that u(t, x) = w(t, π(x))

for all x ∈ T and t ≥ 0. By (2.4), we have

w(t, π(x)) = E ( �d,��)[w(0, π(Bt )) exp
{
β

∫ t

0

(
1 − w

(
t − s, π(Bt )

))
ds
}]

,

where Bt is a Brownian motion on the treeT. Since π(B) = Y in distribution by Lemma
2.2, we obtain that w solves equation (2.6) which implies that w = v by uniqueness of
solution to (2.6). ��
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In particular, as we assumed u0(x) = 1(−δ,δ)(x), we obtain from Lemma 2.3 that
v0(y) = 1(−δ,δ)(y). From (2.5) in Lemma 2.3, we see that the wave speed for u(t, x) on
T �d,��, defined in Definition 4, is the same as that for v(t, y) on R.

Lemma 2.4. A positive real number c∗ > 0 is the asymptotic speed for (2.3) (in the
sense of Definition 4) if the following holds: for any h > 0

lim
t→∞ sup

y>(c∗+h)t
v(t, y) = lim

t→∞ sup
y<(−c∗−h)t

v(t, y) = 0 , lim
t→∞ inf

(−c∗+h)t<y<(c∗−h)t
v(t, y) = 1 ,

where v(t, y) is the generalized solution to (2.6).

Our analysis of the wavefront propagation of the equation (2.3) on T �d,�� is reduced
by Lemmas 2.3, 2.4 to the analysis of the corresponding solution v(t, y) of the integral
equation (2.6) given by the Feynman-Kac formula. The rest of the paper is dedicated to
the surprisingly delicate analysis of the LDP of Yt and the wave propagation of (2.6),
that leads to the solution to our problem.

2.4. Notations and Convention. We collect some notations here for the reader’s con-
venience. Let N = Z>0 = {n ∈ Z, n > 0} be the set of positive integers and
Z+ = Z≥0 = {n ∈ Z, n ≥ 0} be the set of non-negative integers, and similarly
Z<0 = {n ∈ Z, n < 0} and Z≤0 = {n ∈ Z, n ≤ 0}. We let a ∨ b := max{a, b}
and a ∧ b := min{a, b}. We denote an open δ-ball centered at u ∈ R to be Bδ(u). A tree
T = T �d,�� is equipped with two parameters: the branching degree sequence �d = (di )

and the branch lengths sequence �� = (�i ). If �i = 1 for all i , then T �d,�� = T �d . We define

pi = di − 1

di
and we set the interface points zi so that z0 = 0 and zi+1 − zi = �i and

z−i = −zi for i ≥ 0. The pair ( �d, ��) uniquely determines ( �p, �z) and vise versa. Hence
we use them interchangeably.

The Brownian motion on T �d,�� is denoted by Bt and the corresponding multi-skewed
Brownian motion onR is denoted by Yt . Notice that when the tree degenerates toR, this
also includes the case that Bt stands for a standard Brownian motion on R. If these two
processes arewrittenwith superscripts, like Bx

t orY y
t , then it stands for the corresponding

process starting at the initial point denoted by the superscripts x ∈ T and y ∈ R. The
probabilities and expectations for the Brownian motion and multi-skewed Brownian
Motion with a fixed environment are denoted by P( �d,��) (P( �p,�z)) and E ( �d,��) (E ( �p,�z)). The
probabilities and expectations for the random environment are defined by P and E. We

set pi
+1 ≡ pi = �i−1 pi

�i (1 − pi ) + �i−1 pi
and pi−1 ≡ qi = 1− pi

+1. The first hitting time for

Yt from Y0 = s to r is defined by T s
r . We let τk be the k-th time the multi-skewed BM

Y hits the interface set �z = (zi )i∈Z. We set η = −λ to be two parameters of opposite
sign, and γi = e

√
2λ�i , ζi = 2pi − 1. A limiting random variable ξ = ξλ = ξ−η will be

introduced to analyze the wave speed.

3. Multi-skewed Brownian Motion in Random Environment

Let �z := {zi }i∈Z be a set of real numberswith no accumulation point (sometimeswe refer
to zi ’s as barriers or the interface points, and �z the interface set) and �p := {pi }i∈Z ⊂ (0, 1)
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(we refer to �p as the skewness sequence). It follows from [25] that there is a unique
pathwise solution Y = (Yt )t≥0 to the stochastic differential equation

Yt = Y0 + Bt +
∫

R

LY (t, x) dμ(x) , (3.1)

where B is the standard Brownian motion on R, LY is the local time of the unknown
process Y , and μ is the bounded measure

μ =
∑

i∈Z
(2pi − 1) δzi . (3.2)

Definition 5 (multi-skewed Brownian motion [31]). The unique diffusion process Y =
(Yt )t≥0 on R solving (3.1) is called a multi-skewed Brownian motion with skewness
sequence �p and interface set �z.

Suppose, as in Sect. 2.3, that z0 = 0, zi+1 − zi = �i and z−i = −zi for i ≥ 0, and

pi := di − 1

di
. (3.3)

The pair ( �d, ��) uniquely determines ( �p, �z) and vise versa. The symmetric �d-regular tree
with branch lengths �� can then be denoted either as T �d,�� or T �p,�z .

Wedenote the twoprobabilitymeasures governing the environment ( �p, �z) ∈ (0, 1)Z×
R
Z and the diffusion Y with skewness sequence and interface set ( �p, �z) by, respectively,

P and P( �p,�z). Their mathematical expectations are denoted byE and E ( �p,�z) respectively.
Following literature on randomwalk in random environments (RWRE)we refer to P( �p,�z)
as the quenched law 3.

Assumption 3 directly implies the following Lemma for the structure of the interface
set �z and skewness sequence �p.
Lemma 3.1. The probability measureP on the space of “environments” ( �p, �z) ∈ (0, 1)Z×
R
Z that governs the structure of the multi–skewed Brownian Motion Yt satisfies the fol-

lowing:

(1) (i.i.d. skewness and branch lengths). Under P, (pi )i≥1 is an i.i.d sequence of random
variables in (0, 1), (�i = zi+1 − zi )i≥0 is an i.i.d sequence in (0,∞), and the two
sequences are independent.

(2) ( �p is symmetric). For P-almost all ( �p, �z), there exists a sequence of positive integers

�d := (dn)n∈Z+ with d0 = 2 and 2 ≤ dn ≤ d < ∞, such that pi = di − 1

di
and p−i =

1 − pi for i ≥ 0.
(3) (�z is symmetric). z0 = 0, zn := ∑n−1

i=0 �i and z−n = −zn for n > 0. For P-almost all
( �p, �z) and all n ≥ 0, 0 < � ≤ zn+1 − zn ≤ � < ∞.

We define pi
+1 and pi−1 by

pi
+1 := �i−1 pi

�i (1 − pi ) + �i−1 pi
and pi−1 := 1 − pi

+1. (3.4)

3 The annealed measure P is defined by P(A) = E[P( �p,�z)(A)] = ∫

(0,1)Z×RZ P( �p,�z)(A) dP.
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Remark 3.1. (embedded randomwalk). The embedded randomwalk ofY on �z := {zi }i∈Z
is a biased randomwalkwith transition probabilities {pi

+1, pi−1} given by (3.4). Precisely,
let τ0 = 0 and for k ≥ 0 we define

τk+1 := inf{t > τk : Yt ∈ �z} (3.5)

to be the (k + 1)-th time that Y hits the set �z = (zi )i∈Z. Then by [31, equations (2.9)-
(2.10)], the random walk {Yτk }k≥0 satisfies

P(Yτk+1 = zi+1|Yτk = zi ) = pi
+1 and P(Yτk+1 = zi−1|Yτk = zi ) = pi−1. (3.6)

3.1. Hitting Time Estimates. For the multi-skewed Brownian motion Yt on R, and any
r, s ∈ R, let us introduce the first hitting time to r starting at s

T s
r = inf {t ≥ 0, Y0 = s, Yt = r} . (3.7)

Let Si
t be a standard pi -skewed Brownian motion (see [20]). That is,

Si
t = Si

0 + Bt + (2pi − 1)L Si

t , (3.8)

where B is the standard Brownian motion on R, L S is the local time of the unknown
process S at 0. Let σ(i) := inf{t ≥ 0 : Si

t ∈ {−�i−1, �i }} be the exit time of the
standard pi -skewed Brownian motion Si

t on the interval (−�i−1, �i ), starting at 0. The
probabilities and expectations with respect to the driving Brownian motion Bt in (3.8)
are denoted as P and E , respectively.

Denote by Si
+1 the event {Si

σ(i) = �i } and by Si−1 the event {Si
σ(i) = −�i−1}. Then

Remark 3.1 asserts that P(Si±1) = pi±1. Define

J i± := J i
η,±1 := E

[
eη σ(i) 1{Si±1}

]
= E

[
eη σ(i)

∣
∣ Si±1

]
pi±1. (3.9)

We write pi := pi
+1 and qi := pi−1 = 1 − pi to simplify notation.

For fixed λ ∈ R, we define the auxiliary function

w(x) ≡ wλ(x) ≡ E ( �p,�z) [e−λT x
0 1T x

0 <∞
]

, x ∈ R , (3.10)

which might be +∞ when λ < 0. Set η = −λ, then we have

w−η(zi ) = E ( �p,�z) [eηT
zi
0 1T

zi
0 <∞

]
. (3.11)

The following lemma summarizes some elementary properties of the function w(x).

Lemma 3.2. Let �z := {zi }i∈Z ⊂ R
Z and �p := {pi }i∈Z ⊂ (0, 1)Z satisfy Lemma 3.1.

The function w = wλ : R → [0,∞] defined in (3.10) satisfies the following properties:

(1) For x > 0, w(x) does not depend on the choice of {(zi , pi )}i<0. Similarly, for x < 0,
w(x) does not depend on the choice of {(zi , pi )}i>0.

(2) w(x) = w(−x) for all x ∈ R.
(3) If λ = 0, then w0(x) = P( �p,�z)(T x

0 < ∞).
(4) If λ > 0, then w is strictly decreasing on (0,∞) and strictly increasing on (−∞, 0).



Wave Propagation for Reaction-Diffusion Equations on Infinite Random Trees

Proof. (1) This is clear from the definition: if x > 0, then the trajectory of Y stays on
(0,∞) during time interval [0, T x

0 ).
(2) For any Borel set A ⊂ (0,∞), we define its reflection set

−A ≡ {−x : x ∈ A} .

Then we have
P �p,�z(Yt ∈ A) = P( �p,�z)(Yt ∈ −A) (3.12)

due to the symmetry of (�z, �p) described in Lemma 3.1.
(3) This follows from the definition of the function w(x) in (3.10).
(4) This can be checked by applying the strong Markov property of process Y to the

stopping times {T x
y } and the fact that, for x > y > 0, we have

T x
0 = T x

y + T y
0 θT x

y
, (3.13)

where for any t ≤ 0, θt : C∗ → C∗ is the shift operator θt x(s) = x(s + t), x ∈ C∗.
��

Recall that w0(z1) = P( �p,�z)(T z1
0 < ∞) by Lemma 3.2 part (3). The following

auxiliary lemma about w0(z1) will be useful in the proof of Lemma 5.1. It asserts that
almost surely with respect to P, this probability is strictly positive.

Lemma 3.3. Let �z := {zi }i∈Z ⊂ R
Z and �p := {pi }i∈Z ⊂ (0, 1)Z satisfy Lemma 3.1.

Then

(a) For i ≥ 1, w0(zi ) = σi

1 + σi
∈ (0, 1] where

σi :=
∑

k≥i

k∏

j=1

p j
−1

p j
+1

=
∑

k≥i

k∏

j=1

� j (1 − p j )

� j−1 p j
. (3.14)

In particular, w0(z1) ∈ (0, 1) if and only if σ1 < ∞.
(b) There exists some positive constant C∗ = C∗(l, l, d) > 0 that depends only on l, l, d

such that w0(z1) ≥ C∗ almost surely under P.

Proof. (a) Note that

T x
0 =

τ X
∑

i=1

(τi − τi−1), (3.15)

where {τi }i≥1 is defined in (3.5), τ0 = 0 and τ X = inf{k ≥ 0 : Yτk = 0}. Under the
bounded Assumptions (2.1) and (2.2), T x

0 < ∞ if and only if τ X < ∞. Part (a) then
follows from standard results for random walks (see, for instance, [37, Chapter VI
section 5.1]).

(b) From part (a) and part (3) in Lemma 3.2, the hitting probability

w0(z1) = P( �p,�z)(T z1
0 < ∞) = σ1

1 + σ1
,

where by (3.14) and (3.4)

σ1 :=
∑

k≥1

k∏

j=1

p j
−1

p j
+1

=
∑

k≥1

k∏

j=1

� j (1 − p j )

� j−1 p j
=
∑

k≥1

k∏

j=1

� j

� j−1(d j − 1)
.
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From this we see that P-a.s. we have

σ1 ≥
∑

k≥1

(
�

�(d − 1)

)k

:= C > 0.

So part (b) holds with C∗ = C

1 + C
.

��
Let us define the critical exponent

ηw
c := sup{η ∈ R : w−η(z1) < ∞} ∈ [0,∞]. (3.16)

Theorem 1 below gives an representation of ηw
c and yields that ηw

c < ∞. Similar results
are obtained in [6, Lemmas 2 and 4], but we cannot directly apply them here.

Theorem 1 (existence of ηw
c ∈ [0,∞)). Under Lemma 3.1, the critical exponent ηw

c
defined in (3.16) is the unique element in [0,∞) such that

lim
k→∞

⎛

⎝
∑

x∈Xk

2k∏

i=0

J i
ηw

c , xi+1−xi

⎞

⎠

1/k

= 1 , (3.17)

where J i
ηw

c ,xi+1−xi
follows (3.9), and Xk is the set of nearest neighbor paths in Z+ with

2k + 1 steps that start at 1, end at 0 and that do not visit 0 during the first 2k steps,
defined by

Xk :=
{

x = (xi )
2k+1
i=0 ∈ Z

2k+1
+ : x0 = 1, x2k+1 = 0,

xi ≥ 1 and xi − xi−1 ∈ {−1, 1} for 1 ≤ i ≤ 2k
}
. (3.18)

Wefirst give a representation ofw−η(z j )whichwill be useful in the proof of Theorem
1 and other places.

Suppose Y0 = z j > 0. Then the embedded random walk of Y takes j + 2k many
steps to hit zero for some k ∈ Z+. In this event, there are exactly k steps to the right and
j + k steps to the left, in which the last step is to the left, and during the first 2k steps the
path does not touch 1. The set of such left-right paths (left = −1, right = 1) is denoted
by X j,k .

Lemma 3.4. For η ∈ R and j ≥ 1,

w−η(z j ) =
∑

k≥0

∑

x∈X j,k

2k+ j∏

i=1

J xi−1
η, xi −xi−1

∈ (0,+∞],

where X j,k is the set of nearest neighbor paths in Z+ with 2k + j steps that start at j ,
end at 0 and that do not visit 0 during the first 2k + ( j − 1) steps.
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Proof of Lemma 3.4. Let j = 1. From (3.15) we have,

w−η(z1) =E ( �p,�z) [eηT
z1
0 1T

z1
0 <∞

]
= E ( �p,�z)

[

eη
∑τ X

i=1(τi −τi−1)1τ X <∞
]

=
∑

k≥0

∑

x∈Xk

E ( �p,�z) [eη
∑2k+1

i=1 (τi −τi−1) 1{Xi −Xi−1=xi −xi−1 for 1≤i≤2k+1}
]
. (3.19)

Recall Si
+1 = {Si

σ(i) = �i } and Si−1 = {Si
σ(i) = −�i−1}, where σ(i) is equal in

distribution to the exit time of Y starting at zi from the interval (zi−1, zi+1).
By conditioning at τi successively and the strong Markov property of Y , a term on

the right of (3.19) is

E ( �p,�z)
[

eη
∑2k+1

i=1 (τi −τi−1)
2k+1∏

i=1

1{Xi −Xi−1=xi −xi−1}

]

=
2k+1∏

i=1

E

[

eη σ(xi−1) 1{S
xi−1
xi −xi−1

}

]

=
2k+1∏

i=1

J xi−1
η, xi −xi−1

,

where J i
η,±1 = E

[
eη σ(i)

∣
∣ Si±1

]
pi±1 is defined in (3.9).

Putting the last display into (3.19), we obtain the lemma for the case j = 1. The
general case j > 1 follows the same proof. ��

From Lemma 3.4, (3.17) follows from the elementary root test if lim
k→∞ were replaced

by lim sup
k→∞

. Lemma 3.5 below shows that the limit indeed exists.

Lemma 3.5. The limit

�η := lim
k→∞

⎛

⎝
∑

x∈Xk

2k∏

i=0

J xi
η, xi+1−xi

⎞

⎠

1/k

∈ [0,∞] (3.20)

exists for all η ∈ R, is non-decreasing and is strictly increasing in η when it is finite.

Proof. We shall apply Kingman’s subadditive ergodic theorem in the same way it is
applied to prove existence of limiting free energy in random polymer models; see for
instance [32, Theorems 2.2 and 2.4].

For 0 ≤ n ≤ m we consider the point-to-point partition function

Zn,m :=
∑

y∈�n,m

m∏

i=n

J yi
η, yi+1−yi

=
∑

y∈�0,m−n

m−n∏

i=0

J yi
η, yi+1−yi

, (3.21)

where �n,m is the set of nearest neighbor paths in N that starts and ends at 1 during the
time interval [n, m], that is,

�n,m :=
{

y = (yi )
m
i=n : yn = ym = 1, y j ≥ 1 and y j − y j−1 ∈ {−1, 1} for n ≤ j ≤ m

}
.
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For any 0 ≤ a ≤ b ≤ c we have Za,c ≥ Za,b Zb,c, because concatenating a path
in �a,b with a path in �b,c gives a path in �a,c. This gives sub-additivity ln Za,c ≥
ln Za,b + ln Zb,c, from which existence of the limiting “point-to-point free energy”

lim
k→∞

1

k
ln Z0,2k = lim

k→∞
1

k
ln

⎛

⎝
∑

x∈Xk

2k∏

i=0

J xi
η, xi+1−xi

⎞

⎠ ∈ [−∞,∞] (3.22)

follows from Kingman’s subadditive ergodic theorem [26, Theorem 2.6 on page 277].
Monotonicity of �η follows from the fact that J i

η,±1 is increasing in η. The strict
inequality then follows from the fact that, under Lemma 3.1,

min
i≥0

(
J i
η2,±1 − J i

η1,±1

)
> 0 ,

for all η2 > η1 such that the limits �η1 and �η2 in (3.20) are finite. ��
Proof of Theorem 1. From the series representation in Lemma 3.4, (3.17) follows from
the elementary root test and the existence of limit in Lemma 3.5. The uniqueness of ηw

c
in Theorem 1 then follows from strict monotonicity of the function η �→ �η stated in
Lemma 3.5.

Observe that, for each path x ∈ Xk , we have (i) x2k = 0 and (ii) the number of steps
from j to j + 1 is the same as the number of steps from j + 1 to j for all j ≥ 1. So for
each x ∈ Xk , there exists an index set { ji } such that

2k+1∏

i=1

J xi−1
η, xi −xi−1

=
(

k∏

i=1

J
x ji
η,+1 J

x ji +1
η,−1

)

J 0
η,−1. (3.23)

Putting (3.23) into Lemma 3.4, we obtain the representation

w−η(�0) =
∑

k≥0

∑

x∈Xk

(
k∏

i=1

J
x ji
η,+1 J

x ji +1
η,−1

)

J 0
η,−1 . (3.24)

By Lemma 3.1, there exists B̃ ∈ [0,∞) such that

Jmin
η := min

i≥1
J i
η,1 J i+1

η,−1 >
1

4
for all η ∈ [B̃, ∞). (3.25)

Then from (3.24) we derive that for all η ≥ B̃ we have

w−η(z1) ≥ J 0
η,−1

∑

k≥0

Ck

(
Jmin
η

)k = +∞ , (3.26)

where we have used the well-known fact that the number of paths |Xk | is the k-th Catalan

number Ck = 1

k + 1

(2k)!
k!k! (see, for example, Corollary 6.2.3 and page 223 of [34]). By

properties of the Catalan number Ck , the above series is equal to +∞ for η ∈ [B̃,+∞).
Thus ηw

c < B̃ < ∞. Since for any η < 0 we have automatically w−η(x) < ∞, we also
know that ηw

c ≥ 0. Hence ηw
c ∈ [

0, B̃
) ⊂ [0,∞). ��
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The following corollary provides a mild condition (3.27) under which ηw
c ∈ (0,∞)

(see Remark 3.2).

Corollary 3.1. If

max
i≥1

pi
+1 pi+1−1 < 1/4 , (3.27)

then ηw
c ∈ (0,∞).

Proof. Let Jmax
η := max

i≥1
J i
η,1 J i+1

η,−1. If (3.27) holds, then because J i
η,±1 ismonotonically

increasing in η, there exists a unique Ã ∈ [0,∞) such that for any η ≤ Ã we have

Jmax
η ≤ Jmax

Ã
= max

i≥1
J i

Ã,1
J i+1

Ã,−1
= 1

4
. (3.28)

From (3.24), we have

w−η(z1) ≤J 0
η,−1

∑

k≥0

Ck

(
Jmax
η

)k

=J 0
η,−1

1 −√
1 − 4 Jmax

η

2 Jmax
η

∈ (0,∞), for η ∈ (−∞, Ã], (3.29)

where we have used again properties of the Catalan number Ck (see, for example,
Corollary 6.2.3 and page 223 of [34]). Thus under (3.27) we have ηw

c > Ã > 0. ��
Remark 3.2. The condition (3.27) holds, for instance, if �i = � are constant for all i ≥ 0
and pi ≥ 2/3 (di ≥ 3) for all i ≥ 1.

4. Construction and Analysis of the Auxiliary Function

In this section we provide more constructions and analysis of the auxiliary function

w(x) ≡ wλ(x) ≡ E ( �p,�z) [e−λT x
0 1T x

0 <∞
]

, x ∈ R

that we introduced in (3.10) in the particular case when λ > 0. This will be useful in
the analysis of large deviations principle for the multi-skewed Brownian motion Yt . Our
analysis will be based on some properties of the limit of an infinite product of 2 × 2
random matrices (see [1] for a general reference on this topic).

Recall the hitting time T s
r introduced in (3.7) and notice that when λ > 0,

w(x) = E ( �p,�z) [e−λT x
0

]
, x ∈ R . (4.1)
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4.1. Results for Deterministic Skewness and Barriers. Set �z := {zi }i∈Z to be a set of real
numbers with no accumulation point and �p := {pi }i∈Z ⊂ (0, 1). Within this subsection
we assume there is no randomness in either �z or �p.

Let {Pt }t≥0 be the semigroup of the process Yt . Generalizing the approach of [7],
one can check that for any f ∈ Cb(R), the function F(t, x) := Pt f (x) is the solution in
C1,2((0,∞) × R \ �z,R) ∩ C([0,∞) × R,R) of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂t
F(t, x) = 1

2

∂2

∂x2
F(t, x) , for t ∈ (0,∞), x ∈ R \ {zi }i∈Z ,

F(0, x) = f (x) , for x ∈ R ,

F(t, z+i ) = F(t, z−
i ) , for t ∈ (0,∞) and ∀i ∈ Z ,

pi∂x F(t, z+i ) = (1 − pi )∂x F(t, z−
i ) , for t ∈ (0,∞) and ∀i ∈ Z \ 0 .

(4.2)

Here f (z−) and f (z+) denote respectively the left sided limit and the right sided limit
of a function f at z.

We make use of some ideas in [18] and [29] in the following analysis. The following
Proposition gives an explicit formula for the function w(x) = wλ(x) defined in (3.10)
in case when λ > 0. We shall use the notation

∏1
i=k−1 Mi = Mk−1Mk−2 · · · M1 and

the convention that it is the identity matrix when k = 1.

Proposition 4.1. Let λ ∈ (0,∞). Let �z := {zi }i∈Z be a set of real numbers and �p :=
{pi }i∈Z ⊂ (0, 1). Let �k = zk+1 − zk and Mk be the matrix

Mk := 1

2pk

(
e
√
2λ�k (2pk − 1)e

√
2λ�k

(2pk − 1)e−√
2λ�k e−√

2λ�k

)

. (4.3)

Consider the sum of column entries of the product matrices:

(
Lk Rk

) := (
1 1

)
1∏

i=k−1

Mi for k ≥ 1. (4.4)

Suppose the following condition hold:

(lim inf
k→∞ Rk) ∨ (lim inf

k→∞ Lk) ∈ (0,∞] , (4.5)

and there exist (possibly +∞) limit

ξ = ξλ ≡ lim
k→∞

Lk

Rk
∈ [0,∞]. (4.6)

Then the function w(x) = wλ(x) defined in (3.10) is explicitly given as follows: w(x) =
w(−x) for x ∈ R and on [0,∞),

w(x) = f +k e
√
2λ(x−zk ) + f −

k e−√
2λ(x−zk ) , x ∈ [zk−1, zk] , k ≥ 1 , (4.7)

where �fk = ( f +k , f −
k ) are given by

�f1 = 1

e
√
2λz1ξ − e−√

2λz1

(−1
ξ

)

and �fk = 1

2

(
1∏

i=k−1

Mi

)

�f1 for k ≥ 2 . (4.8)
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Proof of Proposition 4.1. The fact that w(x) = w(−x) for x ∈ R follows from Lemma
3.2.

Fix λ > 0. The restriction of w(x) = wλ(x) on x ∈ R+ = [0,∞) is the continuous
solution of the following Sturm-Liouville problem onR+ with skew boundary conditions
on the set {zi }i≥1:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 = 1

2
∂2xxw(x) − λw(x) , for t ∈ (0,∞), x ∈ (0,∞) \ {zi }i≥1 ,

pi∂xw(zi+) = (1 − pi )∂xw(zi−) , for i ≥ 1 ,

w(zi+) = w(zi−), for i ≥ 1 ,

w(0) = 1 ,

lim
x→+∞ w(x) = 0 .

(4.9)

From the first equation of (4.9), The function w satisfies the eigenvalue problem

0 = 1

2
∂2xxw(x) − λw(x), x ∈ (zk−1, zk) (4.10)

for all k ≥ 1. This linear second order ODE (4.10) has general solution

w(x) := f +k e
√
2λ(x−zk ) + f −

k e−√
2λ(x−zk ) for x ∈ (zk−1, zk) , (4.11)

where f ±
k are constants to be determined by the boundary conditions in (4.9). The

functions wk(x) = w(x) for x ∈ (zk−1, zk) can be extended continuously to the end
points of the interval [zk−1, zk]. The collection {w(zk)}k≥0 satisfies boundary conditions
of (4.9) that can be stated as the following:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(zk−) = w(zk+) ≡ w(zk), for k ≥ 1 ,

(1 − pk)∂xw(zk−) = pk∂xw(zk+), for k ≥ 1 ,

lim
x↓0 w(x) = w(0) = 1 ,

lim
k→+∞ w(zk) = 0 .

(4.12)

Putting (4.11) into (4.12), we obtain the following system of equations for the un-
known { f +k , f −

k }k≥1.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f +k + f −
k = f +k+1e−√

2λ(zk+1−zk ) + f −
k+1e

√
2λ(zk+1−zk ), for k ≥ 1 ,

(1 − pk)( f +k − f −
k ) = pk

(
f +k+1e−√

2λ(zk+1−zk ) − f −
k+1e

√
2λ(zk+1−zk )

)
, for k ≥ 1 ,

f +1 e−√
2λz1 + f −

1 e
√
2λz1 = 1 ,

f +k + f −
k → 0 as k → ∞ .

(4.13)
Let s := w′(0+) then we have that

{
f +1 e−√

2λz1 + f −
1 e

√
2λz1 = 1 ,√

2λ
(

f +1 e−√
2λz1 − f −

1 e
√
2λz1

)
= s .

Thus, ⎧
⎨

⎩

f +1 = e
√
2λz1

(
1
2 + s√

8λ

)
,

f −
1 = e−√

2λz1
(
1
2 − s√

8λ

)
.

(4.14)



W.-T. L. Fan et al.

From the first two equations of (4.13) for k ≥ 1, we get
⎧
⎪⎨

⎪⎩

f +k+1 = e
√
2λ(zk+1−zk )

1

2pk

(
f +k + (2pk − 1) f −

k

)
,

f −
k+1 = e−√

2λ(zk+1−zk )
1

2pk

(
f +k (2pk − 1) + f −

k

)
.

(4.15)

To simplify notation, we let �fk = ( f +k , f −
k )T to be the transpose of ( f +k , f −

k ). Then for
all k ∈ Z \ {0}, we have

�fk+1 = Mk �fk ,

where

Mk := 1

2pk

(
e
√
2λ(zk+1−zk ) (2pk − 1)e

√
2λ(zk+1−zk )

(2pk − 1)e−√
2λ(zk+1−zk ) e−√

2λ(zk+1−zk )

)

.

Iterating this equation, we have �fk = (Mk−1Mk−2 · · · M1) �f1 for k ≥ 2. i.e.

�fk =
(

1∏

i=k−1

Mi

)⎛

⎝
e
√
2λz1

(
1
2 + s√

8λ

)

e−√
2λz1

(
1
2 − s√

8λ

)

⎞

⎠ , for k ≥ 2 . (4.16)

Now by the fifth condition of (4.13) we have w(zk) = f +k + f −
k → 0 as k → ∞, so

0 = lim
k→∞

(
1 1

)
(

1∏

i=k−1

Mi

)⎛

⎝
e
√
2λz1

(
1
2 + s√

8λ

)

e−√
2λz1

(
1
2 − s√

8λ

)

⎞

⎠ . (4.17)

Suppose Lk and Rk are real numbers such that

(
1 1

)
1∏

i=k−1

Mi = (
Lk Rk

)
.

Then from (4.17), we have

0 = lim
k→∞ e

√
2λz1

(
1
2 + s√

8λ

)
Lk + e−√

2λz1
(
1
2 − s√

8λ

)
Rk

= lim
k→∞

1
2

(
e
√
2λz1 Lk + e−√

2λz1 Rk

)
+ 1√

8λ

(
e
√
2λz1 Lk − e−√

2λz1 Rk

)
s .

Now by assumptions (4.5) and (4.6), it follows that

s = √
2λ

e
√
2λz1 ξ + e−√

2λz1

e−√
2λz1 − e

√
2λz1 ξ

(4.18)

for ξ ∈ [0,∞] (when ξ = +∞, s = −√
2λ).

Thus combining (4.14), (4.16) and (4.18) we get

�f1 = 1

2

⎛

⎜
⎜
⎝

e
√
2λz1

(

1 + e
√
2λz1 ξ+e−√

2λz1

e−√
2λz1−e

√
2λz1 ξ

)

e−√
2λz1

(

1 − e
√
2λz1 ξ+e−√

2λz1

e−√
2λz1−e

√
2λz1 ξ

)

⎞

⎟
⎟
⎠ and �fk = 1

2

(
1∏

i=k−1

Mi

)

�f1 for k ≥ 2 .
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Notice that

e
√
2λz1

(

1 +
e
√
2λz1 ξ + e−√

2λz1

e−√
2λz1 − e

√
2λz1 ξ

)

= e
√
2λz1

(
2e−√

2λz1

e−√
2λz1 − e

√
2λz1 ξ

)

= 2

e−√
2λz1 − e

√
2λz1 ξ

and

e−√
2λz1

(

1 − e
√
2λz1 ξ + e−√

2λz1

e−√
2λz1 − e

√
2λz1 ξ

)

= e−√
2λz1

(
−2e

√
2λz1ξ

e−√
2λz1 − e

√
2λz1 ξ

)

= −2ξ

e−√
2λz1 − e

√
2λz1 ξ

,

we obtain (4.8), which completes the proof of this Proposition. ��

4.2. Results for Random Skewness and Barriers. In Sect. 4.1 ( �p, �z) are not random.
Now we suppose these are random vectors under P which satisfy Lemma 3.1. We want
to verify conditions (4.5) and (4.6) in Proposition 4.1 on {Mi } in order to obtain an
explicit formula for w(x) defined in (3.10) in the case λ > 0.

Recall that {pi }i≥1 are i.i.d. random variables that take values in [ 12 , 1) and {zi+1 −
zi } = {�i }i≥0 are also i.i.d. random variables taking positive values. Moreover,

Mi = 1

2pi

(
e
√
2λ�i (2pi − 1)e

√
2λ�i

(2pi − 1)e−√
2λ�i e−√

2λ�i

)

= 1

2piγi

(
γ 2

i ζiγ
2
i

ζi 1

)

,

(4.19)

in which we denote γi := e
√
2λ�i ∈ (1,∞) and ζi = 2pi − 1 ∈ [0, 1) for simplicity.

Recall also that

(
Lk Rk

) = (
1 1

)
1∏

i=k−1

Mi ∈ R
2
+ for k ≥ 2.

The “backward” process
{(

Lk Rk
)}

k≥2 is not a Markov chain, but the corresponding
“forward” process is. That is

(
L̃k R̃k

) := (
1 1

)
k−1∏

i=1

Mi , k ≥ 2 (4.20)

is a Markov chain, with iterative relation
(
L̃k+1 R̃k+1

) = (
L̃k R̃k

)
Mk . Furthermore,

(
Lk Rk

) d= (
L̃k R̃k

)
in R2

+ for each k ≥ 2.
The following lemma ensures that condition (4.5) in Proposition 4.1 is verified for

the i.i.d. case.

Lemma 4.1. With probability one, L̃k+1 + R̃k+1 > L̃k + R̃k and L̃k > R̃k > 0 for all
k ≥ 2.
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Proof. Define
(
L̃1 R̃1

) = (
1 1

)
. Then the following iterations hold for k ≥ 1:

(
L̃k+1 R̃k+1

) = (
L̃k R̃k

)
Mk = 1

2pkγk

(
γ 2

k L̃k + ζk R̃k ζkγ
2
k L̃k + R̃k

)
.

Adding the two entries gives L̃k+1 + R̃k+1 = γk L̃k + γ −1
k R̃k for k ≥ 1 and so

(L̃k+1 + R̃k+1) − (L̃k + R̃k) = (γk + γ −1
k − 2)Lk + (1 − γ −1

k )(Lk − Rk) . (4.21)

Since γk > 1, the first assertion L̃k+1 + R̃k+1 > L̃k + R̃k follows from the second
assertion L̃k > R̃k .

It remains to prove the latter, L̃k > R̃k for k ≥ 2. The initial case k = 2 holds:
R2 < L2 because

2p1γ1(R2 − L2) = (ζ1γ
2
1 + 1) − (γ 2

1 + ζ1) = (ζ1 − 1)(γ 2
1 − 1) < 0.

Similarly,

2pkγk(Rk+1 − Lk+1) = (ζkγ
2
k L̃k + R̃k) − (γ 2

k L̃k + ζk R̃k)

= (ζk − 1)(γ 2
k L̃k − R̃k) . (4.22)

The proof is complete by induction. ��
Lemma 4.2. With probability one, L̃k → ∞ as k → ∞.

Proof. We will show that L̃k + R̃k → ∞, which implies L̃k → ∞ because L̃k > R̃k by
Lemma 4.1. From (4.21) and the fact that L̃k > R̃k , we have ratio

L̃k+1 + R̃k+1

L̃k + R̃k
> 1 +

γk + γ −1
k − 2

2
= 1 +

(
√

γk − 1√
γk

)2

2
> 1 . (4.23)

Let θk := 1 +

(√
γk− 1√

γk

)2

2 . Then

L̃k+1 + R̃k+1 > 2
k∏

i=1

θi → ∞

by the ergodic theorem. ��
Remark 4.1. Unless the tree T �d,�� degenerates toR, R̃k also tends to infinity P-a.s., since
later we will show by Theorem 2 that except for the case that the tree T �d,�� degenerates

to R, in which case ξ ≡ lim
k→∞

L̃k

R̃k
= ∞, in general we always have ξ < ∞ P-a.s.

The projective line PR1 = R
2/ ∼ is the set of the lines in R

2 passing through
the origin. Let π : R2 → PR1 be the projection map. We parameterize the projective

line PR1 by π(a, b) = arctan

(
b

a

)

∈ (−π/2, π/2] and equip PR1 with the metric

ρ(θ1, θ2) := |θ1 − θ2|. Since ultimately we desire to study the ratio of
L̃k

R̃k
as defined in

(4.20) where L̃k > R̃k > 0 by Lemma (4.1), we are interested in θ ∈
[
0,

π

4

)
.
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Observe that if

(
A B

) = (
a b

)
Mk = 1

2pkγk

(
γ 2

k a + ζkb ζkγ
2
k a + b

)
,

then
B

A
= �k

(b

a

)
, where �k = �(ζk ,γk ) is the random Möbius transform defined as

�(ζ,γ )(z) = ζγ 2 + z

γ 2 + ζ z
. (4.24)

This leads us to consider the map f(ζ,γ ) : PR1 → PR1 defined by

f(ζ,γ )(θ) = arctan
(
�(ζ,γ )(tan θ)

) = arctan

(
ζγ 2 + tan θ

γ 2 + ζ tan θ

)

. (4.25)

The following lemma says that f is a contraction if (ζ, γ ) ∈ [0, 1) × (1,∞).

Lemma 4.3. Let (ζ, γ ) ∈ [0, 1) × (1,∞) and consider the deterministic function f =
f(ζ,γ ) : PR1 → PR1 defined in (4.25). Then

ρ
(

f (θ1), f (θ2)
)

≤ K(ζ,γ ) ρ(θ1, θ2) for all θ1, θ2 ∈
[
0,

π

4

]
, (4.26)

where

K(ζ,γ ) := max

{
γ 2(1 − ζ 2)

(ζ 2 + 1)γ 4 ,
2γ 2(1 − ζ 2)

(ζ 2 + 1)(γ 4 + 1) + 4ζγ 2

}

∈ (0, 1). (4.27)

Proof. Notice that for θ ∈
[
0,

π

2

)
,

f ′(θ) = γ 2(1 − ζ 2)

(ζ 2 + 1)(γ 4 cos2 θ + sin2 θ) + 2ζγ 2 sin(2θ)
> 0. (4.28)

To find an upper bound for f ′(θ) we notice that

∂

∂θ

(
(ζ 2 + 1)(γ 4 cos2 θ + sin2 θ) + 2ζγ 2 sin(2θ)

)
= 0

has solution at

θn = 1

2
arctan

(
4ζγ

(ζ 2 + 1)(γ 4 − 1)

)

+
πn

2
for n ∈ Z .

Moreover, {θn}n∈Z ∩
[
0; π

4

]
= {θ0}, because 4ζγ

(ζ 2+1)(γ 4−1)
> 0 and so arctan θ1 >

π

2
.

Now,

∂

∂θ

(
(ζ 2 + 1)(γ 4 cos2 θ + sin2 θ) + 2ζγ 2 sin(2θ)

)
(θ0)

= 2(ζ 2 + 1)(1 − γ 4)(cos(2θ) − 8ζγ 2 sin(2θ))(θ0)

= 2(ζ 2 + 1)(1 − γ 4) cos

(

arctan

(
4ζγ

(ζ 2 + 1)(γ 4 − 1)

))
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− 8ζγ 2 sin

(

arctan

(
4ζγ

(ζ 2 + 1)(γ 4 − 1)

))

= 1
√
(

4ζγ

(ζ 2+1)(γ 4−1)

)2
+ 1

[

2(ζ 2 + 1)(1 − γ 4) − 8ζγ 2
(

4ζγ

(ζ 2 + 1)(γ 4 − 1)

)]

= 1
√(

4ζγ

(ζ 2+1)(γ 4−1)

)

[

2(ζ 2 + 1)(1 − γ 4) − 32ζ 2γ 3

(ζ 2 + 1)(γ 4 − 1)

]

< 0.

Thus, theminimumvalue of the denominator of (4.28) on [0, π/4] occurs at the endpoints
of [0, π/4] and so 0 < supθ∈[0,π/4] f ′(θ) ≤ K(ζ,γ ). The proof of the lemma is complete
by the midpoint theorem. ��

The following random version of Lemma 4.3 follows immediately.

Corollary 4.1. Let (ζ, γ ) ∈ [0, 1) × (1,∞) be a random variable with the same distri-
bution as (ζ1, γ1) under P. The contraction (4.26) holds with random variable K(ζ,γ )

satisfying K < 1 a.s. In particular, EK < ∞. and E ln K < 0 for all λ ∈ (0,∞).

Corollary 4.1 verifies the contraction assumptions of [8, Proposition 1.1] and thus
gives the desired almost sure limit ξ . This ensures that condition (4.6) is verified for the
i.i.d. case.

Theorem 2 (existence of the limit ξ ). The limit

1

ξλ

:= lim
k→∞

Rk

Lk
∈ [0, 1]

exists P-a.s. for all λ ∈ (0,∞). The distribution of
1

ξλ

is the unique stationary distribu-

tion of the R+-valued Markov chain {xk}k≥1 defined by xk = �k ◦ �k−1 ◦ · · · ◦ �1(1)
for k ≥ 1, where

�k(z) = ζkγ
2
k + z

γ 2
k + ζk z

.

Proof. The process
{

Rk
Lk

}
is a backward (non-Markov) chain in the sense that Rk+1

Lk+1
=

�k

(
Rk
Lk

)
= �1 ◦�2 ◦· · ·◦�k(1). The corresponding forward iteration is theR+-valued

Markov chain {xk}k≥1 defined by xk+1 = �k(xk) for k ≥ 1 and x1 = �1(1).

Similarly, processes ψk := arctan
(

Rk
Lk

)
and θk = arctan (xk) satisfy

ψk = f(ζ1,γ1) ◦ f(ζ1,γ1) · · · ◦ f(ζk ,γk )(1) ,

θk = f(ζk ,γk ) ◦ f(ζ2,γ2) · · · ◦ f(ζ1,γ1)(1) ,

where f(ζ,γ ) is defined as in (4.25). So in particular {θk} is also a Markov Chain. By
Lemma 4.3, { f(ζk ,γk )} is a family of Lipschitz functions from the Corollary 4.1 we know
it is contracting on average. Thus by [8, Theorem 1.1] the Markov chain {θk} converges
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to a unique stationary distribution. In particular, the limit θk → θ∞ exists in distribution.
So

lim
k→∞ xk = lim

k→∞ tan(θk)
d= tan(θ∞) ∈ [0, 1] .

In the above display the limit is less or equal to 1 by Lemma 4.1. Now by [8, Proposition
1.1] for backward iterations, there is an almost sure limit ψ∞ and it has the same
distribution as θ∞. Thus,

1

ξλ

:= lim
k→∞

Rk

Lk
= lim

k→∞ tan(ψk)
a.s.= tan(ψ∞)

d= tan(θ∞) ∈ [0, 1] .

��
The following is an immediate corollary of Theorem 2.

Corollary 4.2. Let λ ∈ (0,∞) be a fixed constant. Let (�, ζ ) be a random variable that
is independent with ξλ and is equal to (�k, ζk) in marginal distribution, where k ≥ 1 is
arbitrary. Then

1

ξλ

d= �(γ,ζ )

(
1

ξλ

)

. (4.29)

where γ = e
√
2λ�. Such random variable

1

ξλ

is unique in distribution.

Based on Corollary 4.2, we can further derive the following corollaries about the
properties of ξ = ξλ.

Corollary 4.3. Unless ζ is identically 0, i.e., di is identically 2, or equivalently the tree
degenerates to the real line R, we have

E
[
1

ξλ

]

> 0 . (4.30)

When the tree degenerates to the real line R, the above expectation is 0.

Proof. Set z = zλ = 1

ξλ

≥ 0. It suffices to show that unless ζ is identically 0, we have

P(z > 0) > 0. Suppose this is not the case, then with P-probability 1 we have z = 0.

By Corollary 4.2, we have
ζγ 2 + z

γ 2 + ζ z
d.= z is 0 with probability 1. But since z ≥ 0 and ζ

is not identically 0, we arrive at a contradiction.
On the other hand, when ζ is identically 0, i.e., di is identically 2, which means that

the tree degenerates to the real line R, 0 is a fixed point of the transformation (4.25) and
thus 1/ξ = 0. ��
Remark 4.2. If ζ is not identically 0, i.e., di is not identically 2, then

1

ξλ

∈ (0, 1] with
positive probability. Otherwise, when ζ is identically 0, i.e., di is identically 2, or in

other words the tree degenerates to the real line R and
1

ξλ

= 0. Moreover, if all di ≥ 3,

then
1

ζλ

∈ (0, 1] with P-probability 1 since in this case P(ζ > 0) = 1 and 0 is not a

fixed point of the transformation (4.25).
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Corollary 4.4. For all λ ∈ (0,∞),

P

(

ξλ ≥ 1 + 2(d)−1 e2�
√
2λ − 1

e2�
√
2λ + 1

)

= 1 . (4.31)

Proof. By Theorem 2, P-a.s, we have ξ = ξλ ≥ 1. Thus from (4.29),
1

ξ

d= �γ,ζ (�),

where γ ≥ e�
√
2λ > 1, ζ ∈ (0, 1), � ∈ (0, 1] and

�γ,ζ (�) = ζγ 2 + �

γ 2 + ζ�
= 1

1 +
(γ 2 − �)(1 − ζ )

ζγ 2 + �

.

This implies that ξ has the same distribution with 1 +
(γ 2 − �)(1 − ζ )

ζγ 2 + �
. Since ζ ≤

1 − 2(d)−1, our choice of γ , ζ and � guarantee that

(γ 2 − �)(1 − ζ )

ζγ 2 + �
≥ 2(d)−1 e2�

√
2λ − 1

e2�
√
2λ + 1

,

where d is the upper bound of the number of branches in Assumption (2.1). Thus P-a.s.
we have

ξ ≥ 1 + 2(d)−1 e2�
√
2λ − 1

e2�
√
2λ + 1

.

��

5. Large Deviations Principle for Multi-Skewed Brownian Motion

Recall that Yt is the multi-skewed Brownian motion in an i.i.d. environment {( �p, �z)}
underP and that Lemma 3.1 holds. Recall the probabilitymeasure P( �p,�z) that determines
the quenched law of Y in a given tree T �p,�z ,

As in the proof of part (2) of Lemma 3.2, we know from (1) in Lemma 3.1 that (3.12)
holds, i.e., for any Borel set A ⊂ (0,∞) we have P( �p,�z)(Yt ∈ A) = P( �p,�z)(Yt ∈ −A).
This fact indicates that in our case, we only have to consider wave-propagation in the
positive direction, and the wave speed in the negative direction should be the same as
that in the positive direction. To this end, we shall first establish Theorem 3 below, which
is parallel to Lemma 5.1 of [16].

Recall that the function w(x) = wλ(x) = E ( �p,�z)
[
e−λT x

0 1T x
0 <∞

]
as in (3.10). As in

Sect. 3.1, we fix a notational convention that η = −λ in the rest of this section. Thus we

can also write w(x) = w−η(x) = E ( �p,�z)
[
eηT x

0 1T x
0 <∞

]
.

For any η ∈ R we define the Lyapunov Exponent

μ(η) ≡ 1

E�0
E
(

ln E ( �p,�z)[eηT
�0
0 1

T
�0
0 <∞]

)

, (5.1)

in which we allow for some choices of η the quantity μ(η) to be +∞.



Wave Propagation for Reaction-Diffusion Equations on Infinite Random Trees

Notice that by (3.10) we have

μ(η) = E lnw−η(�0)

E�0
. (5.2)

Theorem 3 (Lyapunov Exponent identity). Let η ∈ R be such that

E
(∣
∣
∣
∣ln E ( �p,�z)

[

eηT
�0
0 1

T
�0
0 <∞

]∣
∣
∣
∣

)

< ∞ . (5.3)

Let 0 < c < v. Then almost surely the following limit holds

μ(η) = lim
t→∞

1

(v − c)t
ln E ( �p,�z) [eηT vt

ct 1T vt
ct <∞

]
. (5.4)

The convergence is uniform with respect to v and c as they vary on the subset of (0,∞)

that is bounded with (v − c) > 0 bounded away from 0. Furthermore, this limit is
independent of v and c.

Proof. Fix a pair ( �p, �z). For r, s ∈ R we set

q(r, s, η) = E ( �p,�z) [eηT s
r 1T s

r <∞
]

. (5.5)

By the strong Markov property of the multi-skewed Brownian motion Yt , we have
for r < s < t that

ln q(r, t, η) = ln q(r, s, η) + ln q(s, t, η) . (5.6)

Fix c > 0. Let the number N (n) be such that zN (n) ≤ cn and zN (n)+1 > cn, n ∈ N.

Then lim
n→∞

cn

N (n)
= E�0 holds P-almost surely. As we have in our Lemma 3.1, (pi )i≥1

and (zi+1− zi ≡ �i )i≥0 are two i.i.d sequences of random variables, that are independent
of each other. By the Law of Large Numbers for ergodic sequences combined with (5.6)
we see that

lim
n→∞

ln q(0, cn, η)

N (n)
= E

(
ln E ( �p,�z) [eηT

z1
0 1T

z1
0 <∞

])

holds P-almost surely, provided that we have (5.3). Therefore

lim
n→∞

1

cn
ln q(0, cn, η)= lim

n→∞
1

cn

N (n)

ln q(0, cn, η)

N (n)
= 1

E�0
E
(

ln E ( �p,�z)[eηT
�0
0 1

T
�0
0 <∞]

)

,

if (5.3) holds. Now we can derive (5.4) as in [29, Section 2, Proposition 1]. ��
Theorem 3 will lead to the large deviations principle for both the hitting time T s

r and
the process Yt , and from there we will analyze the wave-front propagation on a random
T �d,�� in Sect. 6. The proof here makes use of the arguments in the analysis presented in
[6,28,29,36], [12, Chapter 7] and [18], yet there are many technical differences due to
the presence of multi-skewness of the process Yt and the symmetric structure of the tree.

The following lemma summarizes basic properties of the functionμ(η). To emphasize
the dependence of the limit random variable ξ = ξλ on λ = −η from Theorem 2, we
will explicit this dependence ξ = ξλ = ξ−η throughout.
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Define
ηc := sup{η ∈ R : μ(η) < ∞} . (5.7)

In the below, for a function f (η) that depends on η, we denote f (ηc−) to be the limit
lim

η→ηc−
f (η). The function f (η) can be μ(η) or μ′(η).

Lemma 5.1. The following properties of the function μ(η) hold.

(1) μ(0) ≤ 0;
(2) When η < 0 we have

μ(η) = −√−2η +
1

E�0
E

[

ln
ξ−η − 1

ξ−η − e−2
√−2η�0

]

. (5.8)

In particular, μ(η) < 0 for η < 0;
(3) μ(η) → −∞ as η → −∞;
(4) We have ηc ∈ [0,∞), so that μ(η) < ∞ when η < ηc and μ(η) = +∞ when

η > ηc;
(5) When η ≤ ηc, μ(η) is a convex function of η and μ′(η) is monotonically strictly

increasing in η;
(6) For η < ηc, the function μ(η) is continuously differentiable with μ′(η) > 0. In

particular, 0 < μ′(0) ≤ μ′(ηc−) ∈ (0,+∞] with the equality being satisfied when
ηc = 0.

(7) We have ηcμ
′(0) + μ(0) < μ(ηc−) (if μ(ηc−) = +∞ this is saying that ηcμ

′(0) +
μ(0) < +∞). In particular, if μ(ηc−) ≤ 0, then

−μ(0)

μ′(0)
> ηc;

Proof. (1) By (5.1) and part (3) of Lemma 3.2, setting η = 0 we get

μ(0) = 1

E�0
E
[
ln P( �p,�z)(T �0

0 < ∞)
]

. (5.9)

Since P( �p,�z)(T �0
0 < ∞) ∈ (0, 1], we get μ(0) ≤ 0.

(2) By (4.7) in Proposition 4.1 we have w(�0) = w(z1) = f +1 + f −
1 . By (4.8),

w(�0) = f +1 + f −
1

= − 1

e
√
2λ�0ξλ − e−√

2λ�0
+

ξλ

e
√
2λ�0ξλ − e−√

2λ�0

= ξλ − 1

e
√
2λ�0ξλ − e−√

2λ�0

= e−√
2λ�0 · ξλ − 1

ξλ − e−2
√
2λ�0

. (5.10)

Thus we have

lnw(�0) = −√
2λ�0 + ln

ξλ − 1

ξλ − e−2
√
2λ�0

.

By (5.4) and the convention that η = −λ,

μ(η) = E lnw(�0)

E�0
= −√−2η +

1

E�0

(

E ln
ξ−η − 1

ξ−η − e−2
√−2η�0

)

,
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which is (5.8).

For η < 0 we have ξ−η − 1 < ξ−η − e−2
√−2η�0 so that ln

ξ−η − 1

ξ−η − e−2
√−2η�0

< 0,

which ensures thatμ(η) < 0 since we have the analytic formula (5.8) forμ(η)when
η < 0.

(3) Since ln
ξ−η − 1

ξ−η − e−2
√−2η�0

< 0, as η → −∞ we know that μ(η) → −∞ from the

analytic formula (5.8) for μ(η) when η < 0.
(4) Let ηw

c be defined by (3.16) and η∗
c := ess inf

( �p,�z)∈
̃⊂
,P(
̃)=1
ηw

c be the essential

infimumof ηw
c underP. Then η∗

c ∈ [0,∞). Assumption 2 ensures thatE�0 ∈ (0,∞).
By the proof of Theorem 1, the random variable ηw

c given by (3.16) takes value in[
0, B̃

) ⊂ [0,∞) almost surely under P, where B̃ is given by (3.25). Furthermore,
since both �i and pi are bounded above and below according to Lemma 3.1, there
exists some constant B∗ ∈ (0,∞) such that P(B̃ ≤ B∗) = 1. Thus η∗

c ∈ [0,∞). If
η > η∗

c , then P(η > ηc) > 0 which implies μ(η) = +∞. Hence 0 ≤ ηc ≤ η∗
c < ∞.

(5) By Hölder’s inequality, for any η1, η2 ≤ ηc we have

E ( �p,�z) [e
1
2 (η1+η2)1

T
�0
0 <∞

]
≤ E ( �p,�z) [e

1
2 η11

T
�0
0 <∞

]1/2 · E ( �p,�z) [e
1
2 η21

T
�0
0 <∞

]1/2
.

This implies that when η ≤ ηc, μ(η) is a convex function of η. Due to the condition
at which Hölder’s inequality is satisfied, as long as η1 �= η2 the above inequality
is a strict inequality. This further implies that μ(η) is strictly convex, i.e., μ′(η) is
monotonically strictly increasing in η;

(6) By the same argument in the proof of part (vi) in [29, Lemma 2.2] we can show that

μ′(η) = E

⎡

⎢
⎣

E ( �p,�z)[T �0
0 eηT

�0
0 1

T
�0
0 <∞]

E ( �p,�z)[eηT
�0
0 1

T
�0
0 <∞]

⎤

⎥
⎦ > 0 . (5.11)

Assume that we have a sequence ηn → η < ηc as n → ∞. Then there exist a
constant C = C(ηc, η) that may depend on ηc and η such that

E ( �p,�z)[T �0
0 eηn T

�0
0 1

T
�0
0 <∞] ≤ C E ( �p,�z)[eηT

�0
0 1

T
�0
0 <∞] .

We also have by Lemma 3.3 that there exists another Ĉ > 0 such that

E ( �p,�z)[eηn T
�0
0 1

T
�0
0 <∞] ≥ P( �p,�z)[T �0

0 < ∞] ≥ Ĉ .

So we have

E ( �p,�z)[T �0
0 eηn T

�0
0 1

T
�0
0 <∞]

E ( �p,�z)[eηn T
�0
0 1

T
�0
0 <∞]

≤ C

Ĉ
E ( �p,�z)[eηT

�0
0 1

T
�0
0 <∞] ,

andwecan thus apply thedominated convergence theorem to conclude thatμ′(ηn) →
μ′(η) as ηn → η, i.e., μ′(η) is continuous in η for η < ηc.
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Moreover, (5.11) gives

μ′(0) = E
[

E ( �p,�z)[T �0
0 1

T
�0
0 <∞]

]
∈ (0,+∞] . (5.12)

Since μ′(η) is monotonically increasing in η as long as η ≤ ηc due to part (1), we
get further

0 < μ′(0) ≤ μ′(ηc−) ∈ (0,+∞] (5.13)

with the equality being satisfied as long as ηc = 0;
(7) Since μ(η) is a strictly convex function in η as long as η ≤ ηc, we obtain by the

property of convexity that μ(0) + ηcμ
′(0) < μ(ηc). If μ(ηc) ≤ 0, we further obtain

that μ(0) + ηcμ
′(0) < 0, which is

−μ(0)

μ′(0)
> ηc.

��
Remark 5.1. Consider the ratio ρi := pi−1

pi
+1

where pi
+1 and pi−1 are defined in (3.4). If we

assume E [ρi ] < 1, then by part (a) of Lemma 3.3 we have μ(0) < 0. Moreover, the
condition E [ρi ] < 1 implies that E [ln ρi ] < 0 by Jensen’s inequality, which yields the
law of strong large numbers lim

t→∞
Yt
t > 0 under P by [33, Theorem 1.16].

By (3.4), E [ρi ] < 1 is the same as saying E
[

�i

�i−1(di − 1)

]

< 1. The latter is

satisfied, in particular, if �i = � is a constant and di ≥ 3 for all i .

Remark 5.2. When the tree T �d,�� degenerates to the real line R, it was proved in Lemma
2.2 and Proposition 2 in [29] that ηc = 0, μ(0) = 0 and μ′(0) = ∞.

A key quantity in large deviations theory is the Legendre transform of the Lyapunov
function μ(η). Due to property (6) of Lemma 5.1, we can define the Legendre transform
of μ(η) as a new function I (a):

I (a) = sup
η≤ηc

(aη − μ(η)) . (5.14)

The following lemma summarizes properties of the function I (a).

Lemma 5.2. The following properties of the function I (a) hold.

(1) I (a) is convex in a and I (a) ≥ 0 for a ∈ (0,∞);
(2) I (a) is decreasing in a for a ∈ (0, μ′(0)] and is increasing in a for a ∈ (μ′(0),∞),

with I (μ′(0)) = −μ(0) to be the minimum point of I (a) as a ∈ (0,∞);
(3) lim

a→0+
I (a) = +∞;

(4) I (a) is piecewisely differentiable on both intervals a ∈ (0, μ′(ηc−)) and a ∈
[μ′(ηc−),∞) and I ′(a) ≤ ηc for all a ∈ (0,∞);

(5) I (a) ≥ aηc − μ(ηc−) and I (a) > aηc − μ(ηc−) when a ∈ (0, μ′(ηc−));
(6) If μ′(ηc−) < ∞, then I (a) = aηc − μ(ηc−) for a ∈ [μ′(ηc−),∞);
(7) If μ′(ηc−) = ∞, then I (a) > aηc − μ(ηc−) for a ∈ (0,∞) and I (a) − [aηc −

μ(ηc−)] decreases to 0 as a → ∞;
(8) If μ(ηc−) = ∞, then I ′(a) < ηc for all a ∈ (0,∞) and I ′(a) → ηc as a → ∞.
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Proof. According to parts (1) and (6) of Lemma 5.1, for η < ηc the function μ(η) is
differentiable and μ′(η) is continuous and monotonically strictly increasing. Thus for
any a ∈ (0, μ′(ηc−)) (including possibly the case μ′(ηc−) = ∞), there is a unique
point denoted as η(a) ∈ (−∞, ηc) such that

μ′(η(a)) = a , (5.15)

and for any −∞ < η1 < η(a) < η2 < ηc we have

μ′(η1) < a < μ′(η2) . (5.16)

Let us consider the family of functions ι(η; a) = aη − μ(η) parameterized by
a ∈ (0,∞), so that I (a) = sup

η≤ηc

ι(η; a). The function ι(η; a) is differentiable in η, such

that
d

dη
ι(η; a) = a − μ′(η). This combined with (5.15) and (5.16) imply that for a

fixed a ∈ (0, μ′(ηc−)) we have
d

dη
ι(η; a) > 0 for η ∈ (−∞, η(a)),

d

dη
ι(η; a) = 0

for η = η(a), and
d

dη
ι(η; a) < 0 for η ∈ (η(a), ηc). Notice that ι(η; a) = −∞ when

η > ηc, we see that for any a ∈ (0, μ′(ηc−)) we have I (a) = aη(a) − μ(η(a)).
Supposeμ′(ηc−) < ∞ andμ(ηc−) < ∞ 4, then due to (5.16) and part (5) of Lemma

5.1, we see that for a fixed a ∈ [μ′(ηc−),∞) we have
d

dη
ι(η; a) = a − μ′(η) ≥ 0

for all η ∈ (−∞, ηc) and ι(η; a) = −∞ when η > ηc. Thus in this case, when
a ∈ [μ′(ηc−),∞) we have I (a) = aηc − μ(ηc−).

In summary we have

I (a) =
{

aη(a) − μ(η(a)) for a ∈ (0, μ′(ηc−)) ,

aηc − μ(ηc−) for a ∈ [μ′(ηc−),∞) .
(5.17)

From (5.15), η(a) = [μ′]−1(a) is also a continuous and increasing function of
a ∈ (0, μ′(ηc−)), and thus it is almost everywhere differentiable on a ∈ (0, μ′(ηc−)).
This combinedwith (5.17) and (5.15) tell us that for almost everywhere a ∈ (0, μ′(ηc−))

we have I ′(a) = η(a)+aη′(a)−μ′(η(a))η′(a)
use (5.15)= η(a)+aη′(a)−aη′(a) = η(a).

Since η(a) is continuous, this further ensures that for all a ∈ (0, μ′(ηc−)) we have

I ′(a) = η(a) . (5.18)

(1) Since when η > ηc we have aη − μ(η) = −∞ due to the definition of ηc in (5.7),
we see that indeed I (a) = sup

η∈R
(aη − μ(η)) is the Legendre transform of the convex

function μ(η). This concludes the convexity of I (a). Since μ(0) ≤ 0 due to part
(2) of Lemma 5.1, we have I (a) = sup

η≤ηc

(aη − μ(η)) ≥ a · 0 − μ(0) ≥ 0 for all

a ∈ (0,∞).
(2) Since μ′(0) ≤ μ′(ηc−), due to (5.15) we have η(μ′(0)) = 0. This and part (5) of

Lemma 5.1 the monotonically strict increasing property of μ′(η) imply that when
a ≤ μ′(0)we have I ′(a) = η(a) ≤ 0 and when a > μ′(0)we have I ′(a) = η(a) >

0. This implies that I (a) is decreasing in a for a ∈ (0, μ′(0)] and increasing in a
for a ∈ (μ′(0),∞), and the minimum of I (a) is achieved at a = μ′(0) such that
I (μ′(0)) = μ′(0)η(μ′(0)) − μ(η(μ′(0))) = −μ(0).

4 Notice that if μ(ηc−) = ∞, then μ′(ηc−) = ∞.
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(3) Since η(a) → −∞ as a → 0, this property follows from part (3) of Lemma 5.1.
(4) This follows from (5.17) and the fact that η(a) < ηc when a ∈ (0, μ′(ηc−)).
(5) Since I ′(a) − ηc = η(a) − ηc < 0 when a ∈ (0, μ′(ηc−)), the function I(a) ≡

I (a)− aηc is monotonically decreasing in a and we have I(0) > −μ(ηc−). More-
over, due to (5.17), as a → μ′(ηc−) we have I (a) → aηc − μ(ηc−), so that
I(0) → −μ(ηc−); and when a ≥ μ′(ηc−) we have I (a) = aηc − μ(ηc−), so that
I(0) = −μ(ηc−). These imply the statement.

(6) This follows directly from (5.17).
(7) This follows from the proof of part (6) of this Lemma and the fact that η(a) → ηc

when a → ∞ in the case μ′(ηc−) = ∞.
(8) Notice that when μ(ηc−) = ∞ we must have μ′(ηc−) = ∞, and thus due to

(5.17) and (5.18) and the fact that in this case η(a) < ηc for all a ∈ (0,∞), we
have I ′(a) < ηc for all a ∈ (0,∞). Since η(a) → ηc when a → ∞, we have
I ′(a) → ηc when a → ∞.

��
Wehave demonstrated in Fig. 3 the shape of the function I (a) that exhausts 8 different

cases:

(a-1) μ(ηc−) ≥ 0, 0 < μ′(ηc−) < ∞,
−μ(0)

μ′(0)
≥ ηc;

(a-2) μ(ηc−) ≥ 0, μ′(ηc−) = ∞,
−μ(0)

μ′(0)
≥ ηc;

(b-1) μ(ηc−) ≥ 0, 0 < μ′(ηc−) < ∞,
−μ(0)

μ′(0)
< ηc;

(b-2) μ(ηc−) ≥ 0, μ′(ηc−) = ∞,
−μ(0)

μ′(0)
< ηc;

(c-1) μ(ηc−) < 0, 0 < μ′(ηc−) < ∞;
(c-2) μ(ηc−) < 0, μ′(ηc−) = ∞;

(d-1) μ(ηc−) = μ′(ηc−) = ∞,
−μ(0)

μ′(0)
≥ ηc;

(d-2) μ(ηc−) = μ′(ηc−) = ∞,
−μ(0)

μ′(0)
< ηc.

Notice that due to part (2) of Lemma 5.1, the condition
−μ(0)

μ′(0)
≥ ηc or

−μ(0)

μ′(0)
< ηc

determines whether the point (μ′(0),−μ(0)) (which is the minimum point of I (a)) is
above or below (or, to the left or right of) the line given by a �→ aηc. This issue together
with the condition about the slope of β in Fig. 3 will be discussed in Sect. 6, Remarks
6.1, 6.2.

The following Theorem gives the large deviations principle for the hitting time.

Theorem 4 (Large deviations principle for the hitting time). Let 0 < c < v. Then P-
almost surely the following two estimates hold. For any closed set G ⊂ (0, (v−c)μ′(0))
we have

lim
t→∞

1

t
ln P( �p,�z)

(
T vt

ct

t
∈ G

)

≤ −(v − c) inf
a∈G

I

(
a

v − c

)

; (5.19)

and for any open set F ∈ (0, (v − c)μ′(0)) we have

lim
t→∞

1

t
ln P( �p,�z)

(
T vt

ct

t
∈ F

)

≥ −(v − c) inf
a∈F

I

(
a

v − c

)

. (5.20)
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Fig. 3. Graph of the function I (a) that exhausts all 8 different cases. The constant-(d, �) tree falls into Case
(c-2)

Proof. The proof follows similar ideas as those appeared in the proof of Theorem 2.3 in
[29] (see also Theorem 5.1 in [18]). We consider the upper bound first. By Chebyshev
inequality, for any α > 0 and any η ≤ 0:

lim sup
t→∞

1

t
ln P( �p,�z)

(
T vt

ct

t
< α

)

≤ lim sup
t→∞

1

t
ln P( �p,�z) (eηT vt

ct > eηαt
)

≤ −ηα + lim sup
t→∞

1

t
ln q(ct, vt, η)
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= −ηα + (v − c)μ(η) ,

where in the last identity we have used (5.4). The above estimate works for any η ≤ 0,
so

lim sup
t→∞

1

t
ln P( �p,�z)

(
T vt

ct

t
< α

)

≤ inf
η≤0

(−ηα + (v − c)μ(η))

= − sup
η≤0

(ηα − (v − c)μ(η))

= −(v − c) sup
η≤0

(

η
α

v − c
− μ(η)

)

.

If
α

v − c
≤ μ′(0), then (5.17) and the fact η(a) ≤ 0 for a ≤ μ′(0) due to (5.15)

of Lemma 5.2 imply that sup
η≤ηc

(

η
α

v − c
− μ(η)

)

is achieved at a point η ≤ 0. So by

taking into account the definition of I (a) in (5.14), we indeed have that in this case,

I

(
α

v − c

)

= sup
η≤0

(

η
α

v − c
− μ(η)

)

. Thus the above estimate enables us to obtain

lim sup
t→∞

1

t
ln P( �p,�z)

(
T vt

ct

t
< α

)

≤ −(v − c)I

(
α

v − c

)

.

Since by part (2) of Lemma 5.2, the function I

(
α

v − c

)

is monotonically decreasing

in α when
α

v − c
≤ μ′(0), we see that the above estimate imply (5.19).

We then derive the lower bound. Set u ∈ (0, (v − c)μ′(0)) and δ > 0. Let Bδ(u) =
(u − δ, u + δ) be the δ-ball centered at u. Since

u

v − c
≤ μ′(0), (5.17) and the fact

η(a) ≤ 0 for a ≤ μ′(0) due to (5.15) of Lemma 5.2 imply that there is a ηu ≤ 0 such
that

I

(
u

v − c

)

= ηu
u

v − c
− μ(ηu) .

We now make use of the following Cramér’s change of measure (see [6,36]). Let

d P( �p,�z),u,t

d P( �p,�z) = 1

Su,t
eηu T vt

ct 1T vt
ct <∞ ,

where

Su,t = E ( �p,�z)[eηu T vt
ct 1T vt

ct <∞] .

Then we get

P( �p,�z)
(

T vt
ct

t
∈ Bδ(u)

)

≥ e−ηuut−δt |ηu | P( �p,�z),u,t
(

T vt
ct

t
∈ Bδ(u)

)

E ( �p,�z)[eηu T vt
ct 1T vt

ct <∞] .
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One can show in the same way as in [6, p.77] or as in [36, pp.1195-1196] via a
truncation argument, expectation identity, fourth moment estimates and Borel-Cantelli
Lemma, that we have

lim
t→∞ P( �p,�z),u,t

(
T vt

ct

t
∈ Bδ(u)

)

= 1 . (5.21)

With (5.21) at hand, we can conclude that

lim inf
t→∞

1

t
ln P( �p,�z)

(
T vt

ct

t
∈ Bδ(u)

)

≥ −ηuu − δ|ηu | + (v − c)μ(ηu)

= (v − c)

[

ηu
u

v − c
− μ(ηu)

]

− δ|ηu |

= (v − c)I

(
u

v − c

)

− δ|ηu |

which implies the lower bound (5.20). ��
The following theorem gives the large deviations principle for the multi-skewed

Brownian motion Y y
t , which starts from Y y

0 = y ∈ R.

Theorem 5 (large deviations principle for the multi-skewed Brownian motion Yt ). Al-
most surely with respect to P the following estimates hold. Let v > 0 and κ ∈ (0, 1].
For any closed set G ⊂ [(μ′(0))−1,∞) we have

lim sup
t→∞

1

κt
ln P( �p,�z)

(
vt − Y vt

κt

κt
∈ G

)

≤ − inf
c∈G

cI

(
1

c

)

; (5.22)

and for any open set F ⊂ [(μ′(0))−1,∞) we have

lim inf
t→∞

1

κt
ln P( �p,�z)

(
vt − Y vt

κt

κt
∈ F

)

≥ − inf
c∈F

cI

(
1

c

)

. (5.23)

For any closed set G ⊂ (−∞,−(μ′(0))−1] we have

lim sup
t→∞

1

κt
ln P( �p,�z)

(−vt − Y −vt
κt

κt
∈ G

)

≤ − inf
c∈G

|c|I
(

1

|c|
)

; (5.24)

and for any open set F ⊂ (−∞,−(μ′(0))−1] we have

lim inf
t→∞

1

κt
ln P( �p,�z)

(−vt − Y −vt
κt

κt
∈ F

)

≥ − inf
c∈F

|c|I
(

1

|c|
)

. (5.25)

Proof. Due to the symmetry identity (3.12), we see that (5.24) and (5.25) follow from
(5.22) and (5.23), respectively. So we can focus on the proof of (5.22) and (5.23). These
two identities are parallel to Theorem 5.2 in [18], Theorem 2.4 of [29] and [36, Section
5], and we will employ very similar methods in the proof. However, the symmetric
branching structure in our case will bring in new technical differences, as the reader will
notice in our use of Lemma 5.3 during the proof.
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First, for c ≥ 0 we have

P( �p,�z)
(

vt − Y vt
κt

κt
> c

)

≤ P( �p,�z)
(

T vt
(v−cκ)t

t
< κ

)

. (5.26)

Thus due to Theorem 4 we conclude that

lim sup
t→∞

1

κt
ln P( �p,�z)

(
vt − Y vt

κt

κt
> c

)

≤ −c inf
a∈(0,κ)

I
( a

cκ

)
= −cI

(
1

c

)

whenever c ≥ (μ′(0))−1. This proves the upper bound (5.22).
Let u ≥ (μ′(0))−1. Let ε > 0 and δ > 0 be given. We have the identity

P( �p,�z)
(

vt − Y vt
κt

κt
∈ Bδ(u)

)

= P( �p,�z) (∣∣Y vt
κt − (v − κu)t

∣
∣ < κtδ

)
. (5.27)

We apply themethod in [36, Section 5]. By splitting the event {(1−ε)κt < T vt
(v−κu)t <

κt} into two parts depending on whether or not |Y vt
κt − (v − κu)t | < κtδ,

P( �p,�z) ((1 − ε)κt < T vt
(v−κu)t < κt

)

≤ P( �p,�z) (|Y vt
κt − (v − κu)t | < κtδ

)

+ P( �p,�z) (∣∣Y vt
κt − (v − κu)t

∣
∣ ≥ κtδ; (1 − ε)κt < T vt

(v−κu)t < κt
)

. (5.28)

Combining (5.27) and (5.28) we see that

P( �p,�z)
(

vt − Y vt
κt

κt
∈ Bδ(u)

)

≥ P( �p,�z) ((1 − ε)κt < T vt
(v−κu)t < κt

)

− P( �p,�z) (∣∣Y vt
κt − (v − κu)t

∣
∣ ≥ κtδ; (1 − ε)κt < T vt

(v−κu)t < κt
)

. (5.29)

The last term

P( �p,�z) (∣∣Y vt
κt − (v − κu)t

∣
∣ ≥ κtδ; (1 − ε)κt < T vt

(v−κu)t < κt
)

≤ P( �p,�z)
⎛

⎝ sup
0<s−T vt

(v−κu)t <εκt

∣
∣Y vt

s − (v − κu)t
∣
∣ ≥ κtδ

⎞

⎠

= P( �p,�z)
(

sup
0<s<εκt

∣
∣
∣Y (v−κu)t

s − (v − κu)t
∣
∣
∣ ≥ κtδ

)

, (5.30)

where the first inequality is due to the fact that 0 < κt − T vt
(v−κu)t < εκt and the second

equality is due to the strong Markov property of Yt . We can then turn the above estimate
to the hitting time by duality to obtain that

P( �p,�z)
(

sup
0<s<εκt

∣
∣
∣Y (v−κu)t

s − (v − κu)t
∣
∣
∣ ≥ κtδ

)
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= P( �p,�z) (T (v−κu)t
(v−κu)t−κtδ ∧ T (v−κu)t

(v−κu)t+κtδ < εκt
)

≤ P( �p,�z) (T (v−κu)t
(v−κu)t−κtδ < εκt

)
+ P( �p,�z) (T (v−κu)t

(v−κu)t+κtδ < εκt
)

. (5.31)

By Lemma 5.3,

lim
ε→0

lim sup
t→∞

1

t
ln
[

P( �p,�z) (T (v−κu)t
(v−κu)t−κtδ < εκt

)
+ P( �p,�z) (T (v−κu)t

(v−κu)t+κtδ < εκt
)]

=−∞.

(5.32)
From (5.30), (5.31), (5.32) we obtain that

lim
ε→0

lim sup
t→∞

1

t
ln P( �p,�z) (∣∣Y vt

κt − (v − κu)t
∣
∣ ≥ κtδ; (1 − ε)κt < T vt

(v−κu)t < κt
)
=−∞.

(5.33)
Therefore by (5.29) and (5.33), combined with (5.20) in Theorem 4, we obtain

lim inf
t→∞

1

t
ln P( �p,�z)

(
vt − Y vt

κt

κt
∈ Bδ(u)

)

≥ lim inf
ε→0

lim inf
t→∞

1

t
ln P( �p,�z) (T vt

(v−κu)t ∈ ((1 − ε)κt, κt)
)

= −κuI

(
1

u

)

,

which proves the lower bound (5.23). ��
Finallywe provide the technical Lemma5.3 thatwe have used in the proof of Theorem

5, and we will be using it again during the proof of some Lemmas that leads to the proof
of Theorem 6, in particular in Lemmas 6.3, 6.4.

Lemma 5.3. For any a, b ∈ R such that a �= b, there exist some ε0 = ε0(a, b, �, �, d,

E�0) > 0 depending on a, b and the constants �, �, d, E�0 that are related to the tree
structure, such that for any 0 < ε < ε0 and any M > 0, we have

lim sup
t→∞

1

t
ln P( �p,�z) (T at

bt < εt
) ≤ −M , (5.34)

almost surely with respect to P.

Proof. By Chebyshev’s inequality, for any λ > 0,

P( �p,�z) (T at
bt < εt

) = P( �p,�z) (e−λT at
bt > e−λεt

)
≤ eλεt E ( �p,�z)e−λT at

bt ,

and therefore
1

t
ln P( �p,�z) (T at

bt < εt
) ≤ λε +

1

t
ln E ( �p,�z)e−λT at

bt . (5.35)

It now suffices to prove

lim sup
t→∞

1

t
ln E ( �p,�z)e−λT at

bt ≤ −Cλ|b − a| , (5.36)



W.-T. L. Fan et al.

whereC = C(�, �, d,E�0) > 0 depends on the structure of the treeT �d,��. This is because
with (5.36) we can bound from (5.35) that

lim sup
t→∞

1

t
ln P( �p,�z) (T at

bt < εt
) ≤ λε − λC |b − a| = −λ[C |b − a| − ε] . (5.37)

We can then pick 0 < ε0 <
1

2
C |b − a| and choose λ >

2M

C |b − a| to conclude (5.34).
It remains to prove (5.36). If a and b have different signs, then by strong Markov

property of Yt we have T at
bt = T at

0 + T 0
bt . Thus without loss of generality we only need

to consider the cases 0 ≤ a < b or 0 ≤ b < a. We label the interface points z ∈ (zi )i∈Z
between at and bt as at ≤ z(1) < z(2) < ... < z(n) ≤ bt (if 0 ≤ a < b) or
at ≥ z(1) > z(2) > ... > z(n) ≥ bt (if 0 ≤ b < a). Here n = n(a, b, t) is the number
of interface points between at and bt . By Lemma 3.1,

lim
t→∞

|z(n) − z(1)|
n

= E�0 .

Since |b − a|t − 2� ≤ |z(n) − z(1)| ≤ |b − a|t , from the above we have

lim
t→∞

n

t
= C1|b − a| , (5.38)

for constant C1 = 1

E�0
> 0.

We can then write

T at
bt = T at

z(1) + T z(1)
z(2) + ... + T z(n−1)

z(n) + T z(n)
bt . (5.39)

By the strong Markov property of Yt , the sequence T z(k)
z(k+1) is a P( �p,�z)-independent

sequence so that from (5.39) we obtain

ln E ( �p,�z)e−λT at
bt = ln E ( �p,�z)e−λT at

z(1) +ln E ( �p,�z)e−λT z(1)
z(2) + ...+ln E ( �p,�z)e−λT z(n−1)

z(n) +ln E ( �p,�z)e−λT z(n)
bt .

(5.40)
If 0 ≤ b < a, then z(k) > z(k + 1) > 0 for all 1 ≤ k ≤ n − 1. By the same reason as

we prove part (1) in Lemma 3.2, as well as Lemma 3.1, the sequence ln E ( �p,�z)e−λT z(k)
z(k+1)

is a stationary ergodic sequence with respect to P, so that by the Law of Large Numbers
for ergodic sequences and (5.40) we have, with P-probability 1, that

lim
n→∞

1

n
ln E ( �p,�z)e−λT at

bt = E
(

ln E ( �p,�z)e−λT z(1)
z(2)

)

. (5.41)

Combining (5.41) and (5.38) we see that

lim
t→∞

1

t
ln E ( �p,�z)e−λT at

bt = C1|b − a|E
(

ln E ( �p,�z)e−λT z(1)
z(2)

)

. (5.42)

By Lemma 3.1 we have that there exist some C2 = C2(�, �, d) > 0 that T z(1)
z(2) ≥ C2

with P( �p,�z)-probability 1. Thus

E
(

ln E ( �p,�z)e−λT z(1)
z(2)

)

≤ −λC2 . (5.43)
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Finally (5.42) and (5.43) conclude (5.36) with C = C1C2.
If 0 ≤ a < b, then 0 < z(k) < z(k + 1) for all 1 ≤ k ≤ n − 1. In this case the

sequence ln E ( �p,�z)e−λT z(k)
z(k+1) is not a stationary ergodic sequence with respect to P, but

as t, n → ∞ and thus k → ∞, the sequence ln E ( �p,�z)e−λT z(k)
z(k+1) becomes asymptotically

stationary ergodic and its distribution tends to lim
k→∞ ln E ( �p,�z)e−λT z(k)

z(k+1) . Hence (5.41) will

be replaced by

lim
n→∞

1

n
ln E ( �p,�z)e−λT at

bt = E lim
k→∞

(

ln E ( �p,�z)e−λT z(k)
z(k+1)

)

.

Therefore, in this case we can still obtain (5.42) and (5.43) if we replace ln E ( �p,�z)e−λT z(1)
z(2)

by lim
k→∞

(

ln E ( �p,�z)e−λT z(k)
z(k+1)

)

. So we still conclude (5.36). ��

6. From LDP to Wave Propagation on Infinite Random Trees

Based on the large deviations principle established for the multi-skewed Brownian mo-
tion Yt as in Theorems 4 and 5 in Sect. 5, we establish in this section the wavefront
propagation for FKPP equation (2.3) on infinite random tree T �d,��.

Let us define a non-random constant c∗ > 0 as the solution to the equation

c∗ I

(
1

c∗

)

= β , (6.1)

where β = f ′(0) is the constant in (2.3). The next lemma characterizes c∗.

Lemma 6.1. When β > max

(

ηc,
−μ(0)

μ′(0)

)

, the equation (6.1) admits a unique solution

c∗ > 0 with the following properties:

(1) c∗ > (μ′(0))−1;
(2) For any δ > 0 such that (c∗ − δ, c∗ + δ) ⊂ (0,∞), there exist some ε̃ = ε̃(δ) > 0

such that we have

cI

(
1

c

)

− β < −ε whenever 0 < c < c∗ − δ , (6.2)

and

cI

(
1

c

)

− β > ε whenever c > c∗ + δ , (6.3)

where the positive constant ε = c̃ε depends on δ and the choice of c ∈ (0, c∗ − δ) ∪
(c∗ + δ,∞).

(3) When c > c∗ the function cI

(
1

c

)

is monotonically increasing as c is increasing;

Proof. The validity of the statements in this Lemma can be seen from Fig. 3. To be
precise, by property (3) of Lemma 5.2, the function I (a) − βa approaches +∞ when
a → 0. Since I ′(a) ≤ ηc for all a ∈ (0,∞), and β > ηc, the function I (a) − βa is
monotonically decreasing in a and it approaches −∞ as a → ∞. Thus there exists a

unique a∗ ∈ (0,∞) such that I (a∗) − βa∗ = 0. We can then set c∗ = 1

a∗ .
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(1) Since β >
−μ(0)

μ′(0)
, and both the points

(
1

c∗ ,
β

c∗

)

and (μ′(0),−μ(0)) lie on the

graph of I (a), we see that the intersection of the line βa with I (a) must happen

at a point with the a-coordinate less that μ′(0). That is, a∗ = 1

c∗ < μ′(0), i.e.,
c∗ > (μ′(0))−1.

(2) As we have seen, the function I (a) − βa is strictly monotonically decreasing from
+∞ to−∞ as a goes from 0 to∞. This implies that for any δ̃ > 0 and any a > a∗+ δ̃

we have I (a) − βa < −̃ε, any a < a∗ − δ̃ we have I (a) − βa > ε̃, where ε̃ is a

positive constant that may depend on δ̃ and a. Set c = 1

a
, we get from here that for

any δ > 0, for any c < c∗ − δ we have I

(
1

c

)

− β

c
< −̃ε, and for any c > c∗ + δ

we have I

(
1

c

)

− β

c
> ε̃. Set ε = c̃ε, we get the statement.

(3) By part (2) of Lemma5.2, the function I

(
1

c

)

is amonotonically increasing function

of c when
1

c
< μ′(0), i.e., c > [μ′(0)]−1 = c∗. This implies the statement.

��
Remark 6.1. Aswewill see in the arguments below that to proveTheorem6, the condition

β >
−μ(0)

μ′(0)
is to ensure that we can use the LDP Theorems 4, 5 in our analysis of the

wavefront propagation, and the condition β > ηc is to ensure that property (2) in Lemma
6.1 holds, which ensures the existence of a unique wavefront.

Remark 6.2. According to part (7) of Lemma 5.1, once we have μ(ηc−) ≤ 0, then
−μ(0)

μ′(0)
> ηc, so that the condition β > max

(

ηc,
−μ(0)

μ′(0)

)

becomes the only condition

that β >
−μ(0)

μ′(0)
. However, when μ(ηc−) > 0, it might happen that

−μ(0)

μ′(0)
< ηc. To

this end, Fig. 3 parts (a-1), (a-2), (d-1) demonstrate the case when
−μ(0)

μ′(0)
≥ ηc, and

parts (b-1), (b-2), (d-2) demonstrate the case when
−μ(0)

μ′(0)
< ηc.

Due to Lemma 6.1, in the following we will obtain our result about the existence of
a travelling wavefront based on the assumption that β is large enough. Thus we have

Assumption 4. We assume that the reaction rate

β > max

(

ηc,
−μ(0)

μ′(0)

)

≡ βc . (6.4)

Our main result that characterizes the wave-speed is given by the following

Theorem 6 (wavefront propagation for FKPP equation on infinite random tree T �d,��).
Assume Assumption 4 holds. For any closed set F ⊂ (−∞,−c∗) ∪ (c∗,∞) we have

lim
t→∞ sup

c∈F
v(t, ct) = 0 (6.5)
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almost surely with respect to P. For any compact set K ⊂ (−c∗, c∗) we have

lim
t→∞ inf

c∈K
v(t, ct) = 1 (6.6)

almost surely with respect to P.

Proof. The proof makes use of the arguments from the classical variational analysis
as in [12, Chapter 7, Theorem 3.1], [29, Theorem 4.1, Lemma 4.1, Lemma 4.2] and
[28, Theorem 1 and Theorem 2]. Lemma 6.2 provides the upper bound (6.5) for the
behavior of the wave outside (−c∗, c∗). Lemma 6.3 provides the lower bound (6.6) for
the behavior of the wave inside (−c∗, c∗). Lemmas 6.4 and 6.5 are of auxiliary nature,
but they are important in proving Lemma 6.3. Thus the Theorem is proved. ��

The following lemma provides the upper bound (6.5) for the behavior of the wave
outside (−c∗, c∗).

Lemma 6.2. Suppose Assumption 4 holds. For any closed set F ⊂ (−∞,−c∗) ∪
(c∗,∞),

lim
t→∞ sup

c∈F
v(t, ct) = 0 (6.7)

almost surely with respect to P.

Proof. Wefirst consider the casewhen c > c∗.We can applyLemma2.3 and in particular
equation (2.6) and we obtain that, for the function v(t, y) defined in (2.5) we have

v(t, y) = E ( �p,�z)
y

[

v0(Yt ) exp

{

β

∫ t

0
(1 − v(t − s, Ys)) ds

}]

≤ exp(βt)E ( �p,�z)
y v0(Yt ) .

Let the support of the function v0(y) be a compact set U ⊂ (−∞,∞), and further
assume that U = Bδ = (−δ, δ) for some δ > 0. Thus we have

v(t, ct) ≤ ‖v0‖ exp(βt)P( �p,�z) (−δ ≤ Y ct (t) ≤ δ
)

= ‖v0‖ exp(βt)P( �p,�z)
(

c +
δ

t
≥ ct − Y ct (t)

t
≥ c − δ

t

)

.

By Lemma 6.1, when c > c∗, we see from (6.3) that β − cI

(
1

c

)

< −ε < 0 for

some ε > 0 that may depend on c. Notice that since c∗ > (μ′(0))−1 due to part (1)

of Lemma 6.1, as t is large and c > c∗, we have

(

c − δ

t
, c +

δ

t

)

⊂ [(μ′(0))−1,∞).

We can then apply Theorem 5 estimate (5.22) with κ = 1 and v = c, and we obtain

that lim sup
t→∞

1

t
ln v(t, ct) ≤ −ε

2
almost surely with respect to P, which implies that

lim
t→∞ sup

c∈F∩(c∗,∞)

v(t, ct) = 0 almost surely with respect to P. The case when c < −c∗

can be argued similarly using estimate (5.24) in Theorem 5. ��
The following lemma provides the lower bound (6.6) for the behavior of the wave

inside (−c∗, c∗).
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Lemma 6.3. Suppose Assumption 4 holds. For any compact set K ⊂ (−c∗, c∗),

lim
t→∞ inf

c∈K
v(t, ct) = 1 (6.8)

almost surely with respect to P.

Proof. The proof ofmakes use of ideas from [28, Section 5] and [12, Chapter 7, Theorem
3.1], but is adapted to the case when β is large (see Lemma 6.1). From (2.6) we have

v(t, y) = E ( �p,�z)
y

[

v0(Yt ) exp

{

β

∫ t

0
(1 − v(t − s, Ys)) ds

}]

. (6.9)

If τ is any stopping time, we also have

v(t, y) = E ( �p,�z)
y

[

v(t − t ∧ τ, Yt∧τ ) exp

{

β

∫ t∧τ

0
(1 − v(t − s, Ys)) ds

}]

. (6.10)

Indeed, since Yt is a strongMarkov process, given Ỹ0 = Yt∧τ , the process Ỹr = Y(t∧τ)+r ,
0 ≤ r ≤ t − t ∧ τ has the same distribution as Y and hence satisfies (6.9), so that

v(t − t ∧ τ, Ỹ0) = E ( �p,�z)
Ỹ0

[

v0(Ỹt−t∧τ ) exp

{

β

∫ t−t∧τ

0

(
1 − v(t − t ∧ τ − r, Ỹr )

)
dr

}]

,

which translates, by setting s = t ∧ τ + r , to

v(t − t ∧ τ, Yt∧τ ) = E ( �p,�z)
Yt∧τ

[

v0(Yt ) exp

{

β

∫ t

t∧τ

(1 − v(t − s, Ys)) ds

}]

.

The above equation, when plugged in, justifies (6.10).
Therefore, we can obtain estimates on v by choosing stopping times and restricting

the expectation to certain sets of paths. The exponential term inside the expectation will
be large when the path Y y

t passes through regions where v is small; on the other hand,
if v(t − t ∧ τ, Yt∧τ ) is too small, then the expectation as a whole may be small.

For s ∈ R we define the set

�(s) =
{

c ∈ R; |c|I
(

1

|c|
)

− β = s

}

and �(s) =
{

c ∈ R; |c|I
(

1

|c|
)

− β ≤ s

}

.

For any δ > 0 and T > 1 we define

�T =
⎛

⎝[{1} × �(δ)] ∪
⎡

⎣
⋃

1≤t≤T

({t} × t�(δ))

⎤

⎦

⎞

⎠ .

Notice that for 1 ≤ t1 < t2 we have �t1 ⊂ �t2 and the set � ≡ ⋃

1<t<∞
�t defines the

boundary of an unbounded region that spreads outward in z and is linearly in t . Due to part

(3) of Lemma 6.1, as |c| > c∗ is monotonically increasing we have |c|I
(

1

|c|
)

− β > 0

is monotonically increasing. By the argument of Lemma 6.2 this indicates that outside
the region �, as t is sufficiently large, v(t, y) may be close to zero. But on the boundary
of this region �, we have the crucial lower bound from Lemma 6.4, which gives

v(s, y) ≥ e−2δt for all (s, y) ∈ �t (6.11)
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when t is sufficiently large.
Let K be a compact set such that K ⊂ (−c∗, c∗). By (6.2) in Lemma 6.1, for any

c ∈ K we have |c|I
(

1

|c|
)

− β < 0. Set y = ct for some c ∈ K . Set h ∈ (0, 1) and

t > 0. We define the stopping times

σh(t) = min{s ∈ [0, t]; v(t − s, Y y
s ) ≥ h} ,

σ�(t) = min{s ∈ [0, t]; (t − s, Y y
s ) ∈ �t } ,

σ̂ (t) = σh(t) ∧ σ�(t) .

We then apply (6.10) with the stopping time σ̂ (t) we express v(t, y) as

v(t, y) = E ( �p,�z)
y

[

v(t − t ∧ σ̂ , Yt∧σ̂ ) exp

{

β

∫ t∧σ̂

0
(1 − v(t − s, Ys)) ds

}

(1A1 + 1A2 + 1A3 )

]

,

(6.12)
where A1, A2, A3 are disjoint sets separating the whole sample space

A1 = {ω; σh(t) ≤ t} ,

A2 = {ω; σh(t) > t , σ�(t) ≥ r t} ,

A3 = {ω; σh(t) > t , σ�(t) < r t}
for some r ∈ (0, 1) to be chosen.

Because A1, A2, A3 are disjoint, the expectation (6.12) splits into three integrals. We
can bound the first integral over A1 from below by

E ( �p,�z)
y

[

v(t − t ∧ σ̂ , Yt∧σ̂ ) exp

{

β

∫ t∧σ̂

0
(1 − v(t − s, Ys)) ds

}

1A1

]

≥ h P( �p,�z)(A1).

(6.13)
The second integral over A2 can be bounded from below by

E ( �p,�z)
y

[

v(t − t ∧ σ̂ , Yt∧σ̂ ) exp

{

β

∫ t∧σ̂

0
(1 − v(t − s, Ys)) ds

}

1A2

]

≥ e−2δt eβ(1−h)r t P( �p,�z)(A2) , (6.14)

where we have used (6.11).
Combining (6.13) and (6.14) we obtain that

v(t, y) ≥ h P( �p,�z)(A1) + e−2δt eβ(1−h)r t P( �p,�z)(A2) . (6.15)

We will choose δ = δ(h, r) > 0 to be small so that −2δt + β(1 − h)r t > 0. Then
since v(t, y) ∈ (0, 1) for all (t, y), (6.15) implies that P( �p,�z)(A2) → 0 exponentially
fast as t → ∞ for small δ > 0. Thus if we can show that P( �p,�z)(A3) → 0 as t → ∞,
then we conclude that P( �p,�z)(A1) → 1 as t → ∞, which then implies that v(t, y) > h
as t → ∞ for any h ∈ (0, 1), that is (6.8).

It remains to show P( �p,�z)(A3) → 0 as t → ∞. By Lemma 6.1 parts (2) and (3), we
see that �(0) = {±c∗} and �(δ) = {±c�(δ)} for some c�(δ) > c∗. Notice that the
initial point y = ct for c ∈ K ⊂ (−c∗, c∗), and thus we have |c| < c∗ < c�(δ). Thus
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σ�(t) ≥ min{s ∈ [0, t] : Y ct
s = ±c∗(t − s)}. Therefore we have the inclusion of the

events

{σ�(t) ≤ r t} ⊆ {
min{s ∈ [0, t] : Y ct

s = ±c∗(t − s)} ≤ r t
}

.

Notice that on the event
{
min{s ∈ [0, t] : Y ct

s = ±c∗(t − s)} ≤ r t
}
we have

min{s ∈ [0, t] : Y ct
s = ±c∗(t − s)} ≥ T ct

c∗(1−r)t ∧ T ct
−c∗(1−r)t ,

so that we can simply bound

P( �p,�z)(A3) ≤ P( �p,�z)(σ�(t) < r t) ≤ P( �p,�z)(T ct
c∗(1−r)t ∧ T ct

−c∗(1−r)t < r t) → 0 ,

when r > 0 is picked to be sufficiently small, due to Lemma 5.3. ��
The following lemma helps to prove Lemma 6.3.

Lemma 6.4. Suppose Assumption 4 holds. For any compact set K ⊂ (−∞,−c∗) ∪
(c∗,∞),

lim inf
t→∞

1

t
ln inf

c∈K
v(t, ct) ≥ −max

c∈K

[

|c|I
(

1

|c|
)

− β

]

. (6.16)

Proof. We use the argument in [29, Lemma 4.1], [28, Lemma 7], [12, Lemma 7.3.2],
with various technical differences that come from Lemma 6.1. The compactness of K

implies that it suffices to show that given ε > 0 and any c for which |c|I
(

1

|c|
)

−β > 0,

we have

lim inf
t→∞

(
1

t
ln inf

c̃∈Bδ(c)
v(t, c̃t)

)

≥ β − |c|I
(

1

|c|
)

− ε , (6.17)

for δ > 0 sufficiently small. Due to part (2) of Lemma 6.1, we see that such a c satisfies
|c| > c∗.Without loss of generality we can assume that the initial data v0(y) ≥ 1Bδ(0)(y)

for some δ > 0, and we can assume that c > c∗ with B6δ(c) ⊂ (c∗,∞). Let us define
the limit on the left-hand side of (6.17) as

q = lim inf
t→∞

(
1

t
ln inf

c̃∈Bδ(c)
v(t, c̃t)

)

. (6.18)

The estimate (6.29) in Lemma 6.5 immediately implies that q > −∞. As above we

set c ∈ K and c > c∗ so that cI

(
1

c

)

− β > 0. Suppose for the moment that q is finite.

By the representation (6.10) we have for any κ ∈ (0, 1] that

inf
c̃∈Bδ(c)

v(t, c̃t) ≥ inf
c̃∈Bδ(c)

E ( �p,�z)
c̃t

[

v(t − κt, Yκt ) exp

{

β

∫ κt

0
(1 − v(t − s, Ys)) ds

}

· 1A

]

(6.19)

for some P( �p,�z)-adapted set A. We pick some small h > 0 and choose A to be the set of
paths satisfying that for all c̃ ∈ Bδ(c) we have both

Y c̃t
κt ∈ B(1−κ)δt ((1 − κ)tc) (6.20)

and
v(t − s, Y c̃t

s ) ≤ h for all s ∈ [0, κt] . (6.21)
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Then

inf
c̃∈Bδ(c)

E ( �p,�z)
c̃t

[

v(t − κt, Yκt ) exp

{

β

∫ κt

0
(1 − v(t − s, Ys)) ds

}

· 1A

]

≥ inf
c̃∈Bδ(c)

v((1 − κ)t, c̃(1 − κ)t) · eβ(1−h)κt · inf
c̃∈Bδ(c)

P( �p,�z)(A) ,

which gives

1

t
ln inf

c̃∈Bδ(c)
v(t, c̃t)

≥ (1 − κ)
1

(1 − κ)t
ln inf

c̃∈Bδ(c)
v ((1 − κ)t, c̃(1 − κ)t) + κβ(1 − h) +

1

t
ln inf

c̃∈Bδ(c)
P( �p,�z)(A) .

Thus taking t → ∞ this gives

q ≥ β(1 − h) + lim inf
t→∞

1

κt
ln inf

c̃∈Bδ(c)
P( �p,�z)(A) . (6.22)

Since c ∈ K and c > c∗ is chosen such that cI

(
1

c

)

− β > 0, by Lemma 6.2 we

see that there is a δ > 0 sufficiently small so that for any h ∈ (0, 1) there is a constant
t0 > 0 depending on h such that

v(t, c′t) ≤ h for all c′ ∈ B6δ(c) and all t ≥ t0 .

Now if 0 < κ <
1

2
and for any c̃ ∈ Bδ(c) we have

sup
s∈[0,κt]

|Y c̃t
s − (t − s)c| ≤ 3δt , (6.23)

then (6.21) is achieved along such paths when t > 2t0.
Next, if c̃ ∈ Bδ(c) is written as c̃ = c + �1 for |�1| < δ, then define ĉ = c + 2�1,

and for any �2 with |�2| < δ we have

c̃t − κt ĉ + κt�2 ∈ B(1−κ)δt ((1 − κ)ct) (6.24)

when κ ∈
(

0,
1

3
− |̃c − c|

3δ

)

is sufficiently small. Indeed

(
c̃t − κt ĉ + κt�2

)− (1 − κ)ct = t [�1 − κ(2�1 − �2)] .

We see from here that −(1 − κ)δ < �1 − κ(2�1 − �2) < (1 − κ)δ ensures (6.24).
This reduces to κ (δ − (2�1 − �2)) < δ−�1 and κ (δ + (2�1 − �2)) < δ+�1. Since

−3δ < 2�1−�2 < 3δ, we see (6.24) is guaranteed if 0 < κ <
δ − |�1|

3δ
= 1

3
− |̃c − c|

3δ
.

This ensures that for each c̃ ∈ Bδ(c) there is a ĉ ∈ B2δ(c) such that (6.20) is achieved
whenever

c̃t − Y c̃t
κt

κt
∈ Bδ(ĉ) . (6.25)

Therefore by (6.23) and (6.25) we can estimate
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inf
c̃∈Bδ(c)

P( �p,�z)(A)

≥ inf
ĉ∈B2δ(c),̃c∈Bδ(c)

P( �p,�z)
(

sup
s∈[0,κt]

|Y ĉt
s − (t − s)c| ≤ 3δt and

c̃t − Y c̃t
κt

κt
∈ Bδ(ĉ)

)

.

(6.26)

For κ ∈
(

0,
2δ

3max(1, c)

)

we see that

sup
ĉ∈B2δ(c)

P( �p,�z)
(

sup
s∈[0,κt]

|Y ĉt
s − (t − s)c| > 3δt

)

≤ sup
ĉ∈B2δ(c)

P( �p,�z)
(

sup
s∈[0,κt]

|Y ĉt
s − ĉt | >

δt

3

)

≤ sup
ĉ∈B2δ(c)

P( �p,�z) (T ĉt
(ĉ−δ/3)t ∧ T ĉt

(ĉ+δ/3)t < κt
)

.

By Lemma 5.3, for any M > 0 we can pick κ sufficiently small so that

lim sup
t→∞

1

κt
ln sup

ĉ∈B2δ(c)
P( �p,�z) (T ĉt

(ĉ−δ/3)t ∧ T ĉt
(ĉ+δ/3)t < κt

)
≤ −M ,

That is,

lim sup
t→∞

1

κt
ln sup

ĉ∈B2δ(c)
P( �p,�z)

(

sup
s∈[0,κt]

|Y ĉt
s − (t − s)c| > 3δt

)

≤ −M . (6.27)

Combining (6.22), (6.26) and (6.27) we see that

q ≥ β(1 − h) + lim inf
t→∞

1

κt
inf

ĉ∈B2δ(c),̃c∈Bδ(c)
P( �p,�z)

(
c̃t − Y c̃t

κt

κt
∈ Bδ(ĉ)

)

. (6.28)

Set h > 0 and δ > 0 sufficiently small. By part (1) of Lemma 6.1 we see that
Bδ(ĉ) ⊂ B3δ(c) ⊂ [(μ′(0))−1,∞). Thus we can apply the estimate (5.22) in Theorem
5 and we see that (6.28) gives (6.17). ��

The following Lemma helps to prove Lemma 6.4.

Lemma 6.5. Suppose Assumption 4 holds. For any bounded set � ⊂ (c∗,∞) and any
small δ > 0, there is a finite constant K1 > 0 such that

lim inf
t→∞

1

t
ln

(

inf
y∈Bδ(tc)

P( �p,�z) (Y y
t ∈ Bδ(0)

)
)

> −K1 (6.29)

uniformly over all c ∈ � such that Bδ(c) ⊂ (c∗,∞).

Proof. Due to continuity of Yt , for any trajectory of Y y
t starting from y = ct + δ and

hitting −δ before time t , there must exist a piece of this trajectory that starts from
some y ∈ Bδ(ct) and ends in Bδ(0) before time t . This gives us the event inclusion
{T ct+δ−δ ≤ t} ⊆ {Y y

t ∈ Bδ(0), y ∈ Bδ(ct)}, which implies that

inf
y∈Bδ(tc)

P( �p,�z) (Y y
t ∈ Bδ(0)

) ≥ P( �p,�z)
(

T ct+δ−δ

t
≤ 1

)

.
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This further implies that

lim inf
t→∞

1

t
ln

(

inf
y∈Bδ(tc)

P( �p,�z) (Y y
t ∈ Bδ(0)

)
)

≥ lim inf
t→∞

1

t
ln P( �p,�z)

(
T ct+δ−δ

t
≤ 1

)

(∗)= lim inf
t→∞

1

t
ln P( �p,�z)

(
T ct
0

t
≤ 1

)

.

Here (∗) is due to the fact that T ct+δ−δ = T ct+δ
ct +T ct

0 +T 0−δ , and that limt→∞
T ct+δ

ct + T 0−δ

t
= 0

holds P( �p,�z)-almost surely. Setting v = c and c = 0 in (5.20) of Theorem 4, we obtain

lim inf
t→∞

1

t
ln P( �p,�z)

(
T ct
0

t
≤ 1

)

> lim inf
t→∞

1

t
ln P( �p,�z)

(
T ct
0

t
∈ (0, cμ′(0))

)

≥ −c inf
a∈(0,cμ′(0))

I
(a

c

)
≡ −K1 ,

so that (6.29) follows. ��

7. Variational Formula for the Speed

Theorem 6 indicates that to compute the speed c∗ in terms of the degrees (di ) and the

branch lengths (�i ), we need to solve the equation (6.1), i.e. c∗ I
( 1

c∗
)

= β for c∗ > 0

(assuming Assumption 4).

By part (1) of Lemma 6.1, we see that c∗ > (μ′(0))−1, i.e., 0 <
1

c∗ < μ′(0).

Thus sup
η≤ηc

(
1

c∗ η − μ(η)

)

is achieved at a point η ≤ 0 due to part (1) of Lemma 5.1,

saying that μ′(η) is strictly monotonically increasing in η. This implies that I

(
1

c∗

)

=

sup
η≤0

(
1

c∗ η − μ(η)

)

. Thus we have

c∗ I

(
1

c∗

)

= c∗ sup
η≤0

(
1

c∗ η − μ(η)

)

= sup
η≤0

(η − c∗μ(η)) = β .

This gives us

c∗ = inf
η≤0

η − β

μ(η)
= inf

λ≥0

λ + β

|μ(−λ)| . (7.1)

Here we have used the fact thatμ(η) ≤ 0 for η ≤ 0 (part (3) of Lemma 5.1). Equation
(7.1) provides a variational formula for thewave speed in terms of theLyapunov function
μ(η) that we introduced in (5.4). Using (7.1),we obtain in the following theorem that
gives the variational formula for the wave speed c∗ in terms of �d and ��.
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Theorem 7 (variational formula for the wave speed on T �d,��). Assuming Assumption 4.
The wave speed c∗ for the system (2.3) on T �d,�� in the sense of Definition 4 is given by

c∗ = inf
λ≥0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ + β

√
2λ +

1

E�0
E

[

ln

(

1 +
1 − e−2

√
2λ�0

ξλ − 1

)]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (7.2)

where ξλ ∈ [1,∞) is given by Theorem 2. In particular, c∗ ≤ √
2β with the equality

achieved if and only if the tree T �d,�� degenerates to R.

Proof. By (5.8) in Lemma 5.1 we can calculate μ(−λ) in terms of �d and ��:

μ(−λ) = −√
2λ +

1

E�0
E

[

ln
ξλ − 1

ξλ − e−2
√
2λ�0

]

. (7.3)

Since ξ = ξλ ≥ 1, we further see that

|μ(−λ)| = √
2λ +

1

E�0
E

[

ln

(

1 +
1 − e−2

√
2λ�0

ξλ − 1

)]

. (7.4)

Formula (7.2) is an easy consequence of (7.1) and (7.4). We first demonstrate how
(7.2) gives the asymptotic speed c∗ for the FKPP equation on R,

∂u

∂t
= 1

2

∂2u

∂x2
+ βu(1 − u) . (7.5)

In this case T �d,�� degenerates to R and all pi = 1

2
. Thus ξ = +∞ by Theorem 2,

Corollary 4.3 and Remark 4.2. By (7.2),

c∗
R

= inf
λ≥0

λ + β√
2λ

= √
2β . (7.6)

Consider the general non-degenerate tree T �d,�� case. Using the elementary inequality

ln(1 + x) ≥ x

1 + x
for all x > 0, we can estimate

1

E�0
E

[

ln

(

1 +
1 − e−2

√
2λ�0

ξλ − 1

)]

≥ 1

�
E

⎡

⎢
⎢
⎢
⎣

1 − e−2
√
2λ�0

ξλ − 1

1 +
1 − e−2

√
2λ�0

ξλ − 1

⎤

⎥
⎥
⎥
⎦

= 1

�
E

[
1 − e−2

√
2λ�0

ξλ − e−2
√
2λ�0

]

≥ 1 − e−2
√
2λ�

�
E

[
1

ξλ − e−2
√
2λ�0

]

≥ 1 − e−2
√
2λ�

�
E
[
1

ξλ

]

> 0
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by Corollary 4.3. Since the infinimum in (7.2) is taken at some λ ≤ √
2β, it ensures that

we have

c∗
T �d,��

= inf
λ≥0

λ + β

√
2λ +

1

E�0
E

[

ln

(

1 +
1 − e−2

√
2λ�0

ξλ − 1

)] < inf
λ≥0

λ + β√
2λ

= √
2β = c∗

R
,

(7.7)
i.e., the wave speed is strictly slower than the one on R. ��
Remark 7.1 (heuristic reason for the slow down of wave speed). The slow down of the
wave speed on T �d,�� can be heuristically explained. The seemingly very complicated
arguments that we employed in Sect. 6 which lead to the existence of the wavefront is
essentially based on an analysis of (2.6):

v(t, y) = E ( �d,��)
y

[
v0(Yt ) exp

{
β

∫ t

0

(
1 − v(t − s, Ys)

)
ds
}]

.

From this equation we see that for those regions of y = ct that the value of v(t, y)

is small (indeed not close 1), the reaction term f (u) = βu(1 − u) will be creating an
exponential birth of the particles at a rate of β, i.e., an eβt factor in the solution v(t, y) in

(2.6). However, this exponential term exp
{
β

∫ t

0

(
1− v(t − s, Ys)

)
ds
}
is multiplied by

v0(Yt ) = 1(−δ,δ)(Yt ), the expectation of which is given by the large deviations principle

of Yt at a rate of −|c|I ( 1
|c| )t , i.e. an e−|c|I ( 1

|c| )t factor in the solution v(t, y) in (2.6). The
competition between these two effects, namely the exponential growth due to reaction
and the large deviation effect due to diffusion, results in the fact that the wavefront speed

c∗ is formed by the equation c∗ I

(
1

c∗

)

= β. This is to say that the traveling speed

c∗ (or −c∗) to the direction of the wave propagation should be a speed so that, when
travelling at this speed, the rate of coming back to (−δ, δ) (the large deviations rate)
equals the birth rate β. In our case, the local time term in the multi-skewed process Yt
from the stochastic differential equation (3.1) can be viewed as providing a drift that
directs towards the direction of the wave propagation, which results in more difficulty

for Yt to reach back (−δ, δ), i.e., larger large deviations rate |c|I
(

1

|c|
)

for fixed speed

c. Noticing that cI

(
1

c

)

is monotonically increasing when c > c∗ and increases, for

fixed β > max

(−μ(0)

μ′(0)
, ηc

)

, to satisfy c∗ I

(
1

c∗

)

= β, the speed c∗ in our case should

be slower than the bare line R case
√
2β as we see in (7.7).

The slow down of the wave speed can be quantitatively estimated from (di ) and
(�i ) using our calculations in Corollary 4.4, formula (5.8) in Lemma 5.1 as well as the
variational formula for the wave speed (7.2). We have

Corollary 7.1. Under the same assumption of Theorem 7,

0 ≤ c∗
R

− c∗
T �d,��

<
√
2β − inf

λ≥0

λ + β

√
2λ +

1

�
ln

(

1 +
de2

√
2
√
2β·�

2
· e4

√
2λ·� − 1

e2
√
2λ� − 1

) . (7.8)
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Proof. By Corollary 4.4 we can estimate

E

[

ln

(

1 +
1 − e−2

√
2λ�0

ξλ − 1

)]

≤ ln

⎛

⎜
⎜
⎜
⎝
1 +

1 − e−2
√
2λ·�

2(d)−1 e2
√
2λ� − 1

e2
√
2λ·� + 1

⎞

⎟
⎟
⎟
⎠

= ln

(

1 +
d

2

e2
√
2λ·�[e4

√
2λ·� − 1]

e2
√
2λ� − 1

)

.

We see that in (7.2), the inf is taken at the point λ = c∗, and further by (7.7), we have
λ = c∗ = c∗

T �d,��
<

√
2β. So we further have

E

[

ln

(

1 +
1 − e−2

√
2λ�0

ξλ − 1

)]

< ln

(

1 +
de2

√
2
√
2β·�

2
· e4

√
2λ·� − 1

e2
√
2λ� − 1

)

.

Therefore by (7.2) we see that

c∗
T �d,��

= inf
λ≥0

λ + β

√
2λ +

1

E�0
E

[

ln

(

1 +
1 − e−2

√
2λ�0

ξλ − 1

)]

> inf
λ≥0

λ + β

√
2λ +

1

�
ln

(

1 +
de2

√
2
√
2β·�

2
· e4

√
2λ·� − 1

e2
√
2λ� − 1

) ,

which gives the upper bound (7.8) on the magnitude of the slow down of the wave speed
on T �d,�� compared to R. ��

When T �d,�� is deterministic with two identical d-regular trees attaching to the root,
the asymptotic wave speed is more explicit. See Corollary 7.2 and Fig. 4 below.

Corollary 7.2 (Constant-(d, �) tree). Suppose there exist deterministic constants d > 2
and � ∈ (0,∞) such that di = d and �i = �0 = � for all i ≥ 1. Let p = d−1

d ∈ (0, 1).
Then

βc = −μ(0)

μ′(0)
= 2p − 1

�
ln

(
p

1 − p

)

= d − 2

� d
ln (d − 1) (7.9)

and for β ∈ (βc,∞), the asymptotic speed is given by (1.4). Furthermore, lim
β→∞

c∗√
2β

=
1, lim

d→∞ c∗ = 0 and lim
d→∞ lim

β↓βc
c∗ = 1 for � > 0.

Remark 7.2. The last assertion raises a curious point: if the reaction rate is maintained
at the critical reaction rate βc, the speed is bounded even if the degree d → ∞. On other
hand, the LDP rate function falls into case (c-2) in Fig. 3.
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Fig. 4. [Left panel] Asymptotic speed c∗ versus reaction rate β for the constant-(d, �) tree. Top curve (blue)
is for R, i.e. d = 2, so it is exactly

√
2β; Middle curve (orange) is for (d, �) = (4, 1); Bottom curve (green)

is for (d, �) = (10, 1). Hence the speed decreases as d increases. [Right panel] c∗ versus p = d−1
d . Top

curve (orange) is for β = 50; Middle curve (blue) is for β = 2.5; Bottom curve (green) is the “critical curve”
p �→ c∗(βc(p), p)

Proof. Recall J i
η,+1 defined in (3.9). Basic stochastic calculus gives J i

η,+1 = p
cos(

√
2η�)

:=
Jη,+ for all i ≥ 1 and η ∈

(
0, π2

8�2

)
. From this we get ηc = 1

2�2
arccos2

(
2
√

p(1 − p)
)

and w−ηc (1) = 1
2Jηc ,+

∈ (0, 1). Besides,

lim
λ↓0 wλ(�) = 1 − p

p
∈ (0, 1) and lim

λ↓0
dwλ(�)

dλ
= −�2

1 − p

p(2p − 1)
∈ (−∞, 0).

(7.10)

So from μ(η) = lnw−η(�)

�
and (7.10) we have

−μ(0)

μ′(0)
= −1

�
ln

(
1 − p

p

)

(2p − 1) > ηc,

giving (7.9).
By solving (4.29) we obtain

ξλ = 2ζ
√

(γ 2 − 1)2 + 4ζ 2γ 2 + 1 − γ 2
=
√

(γ 2 − 1)2 + 4ζ 2γ 2 + γ 2 − 1

2ζγ 2 ,

where ζ = 2p − 1 = d−2
d and γ := e�

√
2λ. The formula of c∗ now follows from (7.2).

Formula (1.4) allows further explicit calculations using calculus. View � ∈ (0,∞)

as fixed always and write �(β, p, λ) as the function after the infinimum. For (β, p) ∈
(0,∞)×(1/2, 1), there is a unique positive number λβ,p at which infinmum on the right
of (1.4) is obtained. That is,

c∗ = inf
λ≥0

�(β, p, λ) = �(β, p, λβ,p). (7.11)

The function of two variables c∗ = c∗(β, p) is continuous on (0,∞) × (1/2, 1). It
can be checked that for fixed p ∈ (1/2, 1), i.e. fixed degree d, the mapping β �→ c∗ is
increasing and lim

β→∞
λβ,p
β

= 1. From the latter we obtain lim
β→∞

c∗√
2β

= 1 from (1.4).
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We further choose β to be the critical βc in (7.9) and consider the “speed at critical”,
c∗(βc, p). As p → 1, we have βc → ∞ and λβc ,p

βc
→ 0. From the latter we obtain

limp→1 c∗(βc, p) = 1 from (1.4). To see this, from (1.4) we have

lim
p→1

c∗(βc, p) = lim
p→1

1

1

� βc
ln

(
4p

1 + γ 2
c −√

(γ 2
c − 1)2 + 4(2p − 1)2γ 2

c

)

where γc = e�
√

2 λβc ,p . Note that 1 − p = 1
d decays linearly in d and βc given by (7.9)

grows like ln d
�
. From these and the fact that lim

d→∞
1
d eC

√
ln d = 0 for all C ∈ (0,∞), we

obtain lim
p→1

(1 − p)γ 2
c = 0 and

lim
p→1

1

c∗(βc, p)
= 1

�
lim
p→1

− ln
(
1 + γ 2

c −√
(γ 2

c − 1)2 + 4(2p − 1)2γ 2
c

)

βc

= lim
d→∞

ln
(
1 + γ 2

c −√
(γ 2

c + 1)2 − 16p(1 − p)γ 2
c

)

− ln d

= lim
d→∞

ln

(
16p(1−p)γ 2

c

1+γ 2
c +

√
(γ 2

c +1)
2−16p(1−p)γ 2

c

)

− ln d

= lim
d→∞

ln
(

8γ 2
c

(1+γ 2
c )d

)

− ln d
= 1.

��
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