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EFFECTIVE ESTIMATES FOR THE SMALLEST PARTS FUNCTION

OSCAR E. GONZÁLEZ

Abstract. We give a substantial improvement for the error term in the asymptotic formula
for the smallest parts function spt(n) of Andrews. Our methods depend on an explicit bound
for sums of Kloosterman sums of half integral weight on the full modular group.

1. Introduction

The smallest parts function spt(n), introduced by Andrews [And08], is defined for any
integer n ≥ 1 as the number of smallest parts among the integer partitions of n. For
example, the partitions of n = 4 are (with the smallest parts underlined)

4,

3 + 1,

2 + 2,

2 + 1 + 1,

1 + 1 + 1 + 1,

and so spt(4) = 10. Apart from its combinatorial significance, this function is also of interest
because the generating function is closely related to a weak harmonic Maass form (see (1.3)),
and it has been the topic of much recent study. Define

λ(n) :=
π

6

√
24n− 1. (1.1)

Refining an asymptotic result of Bringmann [Bri08], Locus Dawsey and Masri used the
algebraic formula for the smallest parts function ([AA16, Thm. 2]) and traces of singular
moduli to prove the following asymptotic formula for the smallest parts function spt(n).

Theorem 1.1 ([LDM19], Thm. 1.1). Let λ(n) be as in (1.1). Then for all n ≥ 1, we have

spt(n) =

√
3

π
√
24n− 1

eλ(n) + Es(n),

where

|Es(n)| < (3.59× 1022)2q(n)(24n− 1)2e
λ(n)
2

and

q(n) :=
log(24n− 1)

| log(log(24n− 1))− 1.1714| .

In Theorem 1.2 we give a substantial improvement to Theorem 1.1. Our methods rely on
the exact formula (2.5) and an explicit bound for sums of Kloosterman sums (Theorem 1.6).
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Theorem 1.2. Let λ(n) be as in (1.1). Then for all n ≥ 1, we have

spt(n) =

√
3

π
√
24n− 1

eλ(n) + Es(n),

where

|Es(n)| < 4.1e
λ(n)
2 .

In Figure 1 we present some data that shows how close Es(n) is to the bound given in
Theorem 1.2. The values of spt(n) were obtained by using the recurrence given in [AA15,
Thm. 1].

n spt(n) |Es(n)| 4.1e
λ(n)
2

1 000 6.0× 1032 2.1× 1015 1.7× 1018

10 000 2.8× 10108 8.0× 1052 2.1× 1056

100 000 6.8× 10348 7.0× 10172 5.7× 10176

1 000 000 1.1× 101110 1.6× 10553 4.1× 10557

5 000 000 5.0× 102486 2.2× 101241 1.3× 101246

Figure 1.

Using our method we can obtain more terms in the asymptotic expansion of spt(n). For
example, we can prove the following theorem.

Theorem 1.3. Let λ(n) be as in (1.1). Then for all n ≥ 1, we have

spt(n) =

√
3

π
√
24n− 1

eλ(n) +
(−1)n

√
6

π
√
24n− 1

e
λ(n)
2 + Es2(n)

where

|Es2(n)| < 8e
λ(n)
3 .

In 2014, Chan and Mao [CM14] raised the following question (later stated as a conjecture
in [Che17]) regarding spt(n):

√
6

π

√
n p(n) < spt(n) <

√
n p(n).

Locus Dawsey and Masri [LDM19, Thm. 1.3] proved the following stronger result: for each
ε > 0, there is an N(ε) > 0 such that for all n ≥ N(ε) we have

√
6

π

√
n p(n) < spt(n) <

(√
6

π
+ ε

)

√
n p(n).

In the following corollary we improve this result.

Corollary 1.4. Let λ(n) be as in (1.1). Then for all n ≥ 1, we have

spt(n) =

√
24n− 1

2π
p(n) +

6
√
3

π2(24n− 1)
eλ(n) + E(n)

where

|E(n)| < 4.11e
λ(n)
2 .
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Much of the interest in the smallest parts function arises from its connection to a harmonic
Maass form. Let η be the Dedekind eta function

η(z) := e
( z

24

)

∞
∏

n=1

(1− e(nz)) , Im(z) > 0 (1.2)

with e(x) := e2πix. Define a weak harmonic Maass form of weight 3/2 on SL2(Z) with
multiplier χ by

F (z) :=
∞
∑

n=1

spt(n)qn−
1
24 − 1

12
· E2(z)

η(z)
+

√
3i

2π

∫ i∞

−z

η(w)

(τ + w)
3
2

dw

=
∞
∑

n=0

S(n)qn−
1
24 +

√
3i

2π

∫ i∞

−z

η(w)

(z + w)
3
2

dw. (1.3)

Here χ is as in (2.2), and E2 is the usual weight two Eisenstein series given by

E2(z) := 1− 24

∞
∑

n=1

σ1(n)q
n,

where σ1(n) :=
∑

d|n d. We prove the following effective asymptotic formula for S(n).

Theorem 1.5. For all n ≥ 1 we have

S(n) = 2
√
3eλ(n) + ES(n)

where λ(n) is as in (1.1) and

ES(n) ≤ 44.11e
λ(n)
2 .

This improves [LDM19, Thm. 1.4], where a bound of size

(4.30× 1023)2q(n)(24n− 1)2e
λ(n)
2

was obtained (with q(n) as in Theorem 1.1).

Our methods rely on an explicit bound for the sums
∑

c≤x
Ac(n)

c
, where the Kloosterman

sum Ac(n) is given by

Ac(n) :=
∑

d mod c
(d,c)=1

eπis(d,c)e−2πi dn
c , (1.4)

and s(d, c) is the Dedekind sum defined by

s(d, c) :=
c−1
∑

r=1

r

c

(

dr

c
−
⌊

dr

c

⌋

− 1

2

)

. (1.5)

These sums exhibit good cancelation. We give a brief summary of known bounds for sums of
such Kloosterman sums. For individual Kloosterman sums Lehmer [Leh38, Thm. 8] proved

|Ac(n)| < 2ωo(c)c
1
2 ≤ τ(c)c

1
2 , (1.6)

where ωo(c) is the number of distinct odd primes dividing c and τ(c) is the number of divisors
of c. Using (1.6) one obtains

∑

c≤x

Ac(n)

c
≪ǫ x

1
2
+ǫ.
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The work of Goldfeld-Sarnak [GS83] yields
∑

c≤x

Ac(n)

c
≪n,ǫ x

1
6
+ǫ. (1.7)

Ahlgren-Andersen [AA18] (with improvements by Dunn in the n-aspect [Dun18]) replaces the

bound in (1.7) by ≪ǫ

(

x
1
6 + n

1
4

)

(nx)ǫ. It is conjectured (generalization of Linnik-Selberg)

that the bound can be replaced by ≪ǫ (nx)
ǫ. Our methods depend on an explicit version

of the work of Goldfeld-Sarnak and Pribitkin for sums of Kloosterman sums of half integral
weight on the full modular group.

For any δ > 0 we have 2ωo(c) ≪δ cδ. For δ > 0 let ℓ(δ) be a constant such that for all
c ∈ N we have

2ωo(c) ≤ ℓ(δ)cδ. (1.8)

Then we have the following bound.

Theorem 1.6. Let 0 < δ ≤ 1/4. For any x ≥ 1 and any integer n ≥ 1 we have
∣

∣

∣

∣

∣

∑

c≤x

Ac(n)

c

∣

∣

∣

∣

∣

≤
(

652.33ζ2(1 + δ)τ((24n− 23)2)| log δ|(n− 1/24)
1
4 + 3ℓ(δ) logx

)

x
1
6
+δ,

where ℓ(δ) is as in (1.8).

For example, we may take ℓ(1/4) = 8.447 and ℓ(1/5) = 28.117. This follows from 2ωo(c) ≤
τ(c) and [Nic88, page 221]. For s > 1 we have

ζ2(s) =
∞
∑

n=1

τ(n)

ns
. (1.9)

The special case of Theorem 1.6 with δ = 1/4 is given as the following corollary.

Corollary 1.7 (δ = 1/4).
∣

∣

∣

∣

∣

∑

c≤x

Ac(n)

c

∣

∣

∣

∣

∣

≤
(

19094.8 τ((24n− 23)2)(n− 1/24)
1
4 + 25.35 logx

)

x
5
12 .

In the next section we give some background material. In Section 3 we calculate the inner
product of two Poincaré series in order to obtain an expression for the Kloosterman zeta
function. We write the inner product as a main term plus an error term Q1,n. In Section 4
we obtain a bound for the error term. In Section 5 we give bounds for the norm of the
Poincaré series. In order to do this we require some results on the K Bessel functions. In
Section 6 we prove a bound on the Kloosterman zeta function. Theorem 6.1 is a quantitative
version of Pribitkin’s main theorem [Pri00]. In Section 7 we prove Theorem 1.6 using the
bound on the Kloosterman zeta function and the Phragmén-Lindelöf principle. Finally in
Section 8 we use Theorem 1.6 and the exact formula (2.5) for the smallest parts function to
prove Theorem 1.2 and Corollary 1.4.

2. Preliminaries

Let Γ = Γ0(N) for some N ≥ 1. We say that ν : Γ → C× is a multiplier system of weight
k ∈ R if

(i) |ν| = 1,
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(ii) ν(−I) = e−πik, and
(iii) ν(γ1γ2) j(γ1γ2, τ)

k = ν(γ1)ν(γ2) j(γ2, τ)
kj(γ1, γ2τ)

k for all γ1, γ2 ∈ Γ.

If ν is a multiplier system of weight k, then it is also a multiplier system of weight k′ for any
k′ ≡ k (mod 2), and the conjugate ν is a multiplier system of weight −k. Define αν ∈ [0, 1)
by the condition ν (( 1 1

0 1 )) = e(−αν). For n ∈ Z, define nν := n−αν . The Kloosterman sum
for a general multiplier ν is given by

S(m,n, c, ν) :=
∑

0≤a,d<c

γ=( a b
c d )∈Γ

ν(γ)e

(

mνa+ nνd

c

)

. (2.1)

We are interested in the multiplier system χ of weight 1/2 on SL2(Z) given by

η(γz) = χ(γ)
√
cz + d η(z), γ =

(

a b
c d

)

∈ SL2(Z), (2.2)

where η is as in (1.2). Rademacher (see (74.11), (74.12), and (71.21) of [Rad73]) showed
that for γ = ( a b

c d ) with c > 0 we have

χ(γ) =
√
−i e−πis(d,c) e

(

a + d

24c

)

, (2.3)

where s(d, c) is as in (1.5). From (2.3) we have χ (( 1 1
0 1 )) = e(1/24), so

αχ = 23
24

and αχ̄ = 1
24
.

For the eta-multiplier, (2.1) and (2.3) give

S(m,n, c, χ) =
√
i
∑

d mod c
(d,c)=1

eπis(d,c)e

(

(m− 1)d+ (n− 1)d

c

)

,

so the sums Ac(n) are given by

Ac(n) =
√
−i S(1, 1− n, c, χ). (2.4)

Recently, Ahlgren and Andersen gave the following Rademacher-type exact formula for the
smallest parts function as a conditionally convergent infinite sum of I-Bessel functions and
Kloosterman sums ([AA16, Thm. 1]):

spt(n) =
π

6
(24n− 1)

1
4

∞
∑

c=1

Ac(n)

c

(

I 1
2
− I 3

2

)

(

π
√
24n− 1

6c

)

. (2.5)

We also have ([AA16])

S(n) = 2π(24n− 1)
1
4

∞
∑

c=1

Ac(n)

c
I 1

2

(

π
√
24n− 1

6c

)

, (2.6)

and

spt(n) =
1

12
S(n)− 24n− 1

12
p(n). (2.7)
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3. The inner product Im,n(s, w)

We obtain an expression for the inner product of two Poincaré series by unfolding. Let
z = x+ iy ∈ H and s = σ + it ∈ C. For m > 0, define the Poincaré series Um(z, s,

1
2
, χ) by

Um(z, s,
1

2
, χ) :=

∑

γ∈Γ∞\Γ
χ(γ)j(γ, z)−

1
2 Im(γz)se(mχγz), σ > 1, (3.1)

where e(x) = e2πix. Selberg [Sel65] proved that Um(z, s,
1
2
, χ) has an analytic continuation

to a meromorphic function. Let n ≤ 0 and define

Zm,n(s) :=
∑

c>0

S(m,n, c, χ)

c2s
. (3.2)

Note that Zm,n(s) converges absolutely for Re(s) > 1 and is analytic in this half-plane.
Selberg proved that Zm,n(s) has an analytic continuation to a function which is meromorphic
in the whole plane.

Define the Petersson inner product by

〈f, g〉 :=
∫

Γ\H
f(τ)g(τ)

dx dy

y2
. (3.3)

Let Re(w) > 1. Define

Im,n(s, w) :=
〈

Um(z, s,
1
2
, χ),U1−n(z, w,−1

2
, χ)
〉

(3.4)

and

Qm,n(s, w) := Zm,n(s)

∫ ∞

0

yw−s−1e2πnχy

×
(

∫ ∞

−∞

(u+ i)−
1
2

(u2 + 1)s−
1
4

e(−nχyu)

(

e

( −mχ

c2y(u+ i)

)

− 1

)

du

)

dy. (3.5)

We have the following expansion for the inner product for mχ > 0 and nχ < 0. The case
mχ > 0 and nχ > 0 is given in [Pri00].

Lemma 3.1. Let mχ > 0 and nχ < 0. For s = σ + it with σ > 1 and Re(w) > σ we have

Im,n(s, w) =
Γ(w + s− 1)Γ(w − s)

Γ
(

w + 1
4

)

Γ
(

s− 1
4

) (−1)−s−wZm,n(s)π
s−w+1(−i)−

1
2 (nχ)

s−w4−w+1+Qm,n(s, w).

Proof. From the proof of [AA18, Lemma 4.2], we have

Im,n(s, w) = Zm,n(s)

∫ ∞

−∞

(

u+ i

|u+ i|

)− 1
2

(u2+1)−s

∫ ∞

0

yw−s−1e

( −mχ

c2y(u+ i)
− nχyu

)

e2πnχy dydu.

Therefore,

Im,n(s, w) = Zm,n(s)

∫ ∞

0

yw−s−1e2πnχy

∫ ∞

−∞

(u+ i)−
1
2

(u2 + 1)s−
1
4

e

( −mχ

c2y(u+ i)

)

e(−nχyu) dudy

= Zm,n(s)

∫ ∞

0

yw−s−1e2πnχy

∫ ∞

−∞

(u+ i)−
1
2

(u2 + 1)s−
1
4

e(−nχyu) dudy +Qm,n(s, w).
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Next we use the formula ([GR14, 3.384 #9])

∫ ∞

−∞
(b+ ix)−2µ(c− ix)−2νe−ipxdx

= 2π(b+ c)−µ−ν (−p)µ+ν−1

Γ(2µ)
exp

(

b− c

2
p

)

Wµ−ν, 1
2
−ν−µ(−bp− cp),

with parameters p = 2πnχy, b = c = 1, µ = s
2
− 1

8
, and ν = s

2
+ 1

8
. Here W is the Whittaker

function. We obtain
∫ ∞

−∞

(u+ i)−
1
2

(u2 + 1)s−
1
4

e(−nχyu) du =
(−1)2sπ(−i)−

1
2 (−πnχy)

s−1

Γ
(

s− 1
4

) W− 1
4
,s− 1

2
(−4πnχy).

It follows that

Im,n(s, w)−Qm,n(s, w)

= Zm,n(s)(−1)−2s π(−i)−
1
2

Γ
(

s− 1
4

)(−πnχ)
s−1

∫ ∞

0

yw−2e2πnχyW− 1
4
,s− 1

2
(−4πnχy) dy

= Zm,n(s)(−1)−2s π(−i)−
1
2

Γ
(

s− 1
4

)(−πnχ)
s−1(−4πnχ)

−w+1

∫ ∞

0

yw−2e−
y

2W− 1
4
,s− 1

2
(y) dy.

Now we use [Obe74, §1.13, 13.52] to obtain
∫ ∞

0

yw−2e−
y

2W− 1
4
, s− 1

2
(y) dy =

Γ(w + s− 1)Γ(w − s)

Γ
(

w + 1
4

) .

Lemma 3.1 follows. �

4. Bounds for Q

In this section we obtain a bound for the error term Q1,n(s, s+2) in Lemma 3.1. We begin
with a preliminary lemma.

Lemma 4.1. Let Re(z) ≤ 0. Then,

|ez − 1| ≤ 1.682|z| 14 .

Proof. Let f(z) = ez−1

z
1
4
, f(0) = 0. On Re(z) = 0 we have

|f(z)| = 2| sin(y/2)|
|y 1

4 |
≤ max

(

2

|y| 14
,
|y|
|y| 14

)

.

Thus, |f(z)| ≤ 2
3
4 on Re(z) = 0. Since the same bound holds trivially on Re(z) = n with

n ≤ −2, the result follows by the Phragmén-Lindelöf principle. �

Lemma 4.2. Let s = σ + it with σ = 1/2 + δ/2 and 0 < δ ≤ 1/4, and let n ≤ 0 be an

integer. Then

|Q1,n(s, s+ 2)| ≤ 0.414ζ2(1 + δ)|nχ|−
7
4 .
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Proof. From (3.5) we have

|Q1,n(s, s+ 2)| ≤ |Z1,n(s)|
∫ ∞

0

ye2πnχy

∫ ∞

−∞

1

(u2 + 1)σ

∣

∣

∣

∣

∣

e

( −1

24c2y(u+ i)

)

− 1

∣

∣

∣

∣

∣

dudy.

By Lemma 4.1 we obtain

|Q1,n(s, s+ 2)| ≤ 1.682|Z1,n(s)|
∫ ∞

0

ye2πnχy

(

π

12c2y

)
1
4
∫ ∞

−∞

1

(u2 + 1)σ+
1
8

dudy

≤ 2.136
Γ
(

σ − 3
8

)

Γ
(

σ + 1
8

)

∑

c>0

|S(1, n, c, χ)|
c2σ+

1
2

∫ ∞

0

y
3
4 e2πnχy dy,

where in the last line we use [GR14, 3.251 #2]. Note that
∫ ∞

0

y
3
4 e2πnχy dy = (−2πnχ)

− 7
4 Γ
(

7
4

)

.

Using (1.9) and the fact that Γ(δ/2+1/8)
Γ(δ/2+5/8)

is decreasing in this range of δ, we get

|Q1,n(s, s+ 2)| ≤ 2.136
∑

c>0

τ(c)

c1+δ
(−2πnχ)

− 7
4
Γ
(

7
4

)

Γ
(

1
8

)

Γ
(

5
8

)

≤ 0.414ζ2(1 + δ)|nχ|−
7
4 . �

5. Bounds on Um

In this section we give a bound for the norm of the Poincaré series. The proofs use similar
techniques as in [Yos11, Lemma 3.2]. We will need the following bounds for the K-Bessel
function.

Lemma 5.1. For y > 0 we have

K0(y) < 0.975y−
1
2 (5.1)

and

K0(y) < 1.7y−
7
2 . (5.2)

Proof. From [Luk72, (6.28)] we have

K0(y) <

√

π
2
(16y + 7)

eyy
1
2 (16y + 9)

for y > 0. Since
√
π(16y+7)√
2ey(16y+9)

< 7
√
π

9
√
2
, the first inequality follows. To obtain the second

inequality, we use that ey > 0.74y3. Then

K0(y) <

√
π(16y + 7)

0.74
√
2y

7
2 (16y + 9)

<

√
π

0.74
√
2y

7
2

< 1.7y−
7
2 . �

We will also need the following integral representation of K0 ([DLMF, (10.32.10)]):

K0(z) =
1

2

∫ ∞

0

exp

(

−t− z2

4t

)

dt

t
. (5.3)
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Proposition 5.2. For s = σ + it with σ = 1/2 + δ/2 and 0 < δ ≤ 1/4, we have

‖U1(z, s+ 1, 1/2, χ)‖ ≤ 4.73.

Proof. Unfolding as in the proof of [Pri00, Lemma 1] we have

‖U1(z, s+ 1, 1/2, χ)‖2 =
(π

6

)−1−2σ

Γ(2σ + 1) +
∑

c>0

S(1, 1, c, χ)

c2s+2

×
∫ ∞

0

∫ ∞

−∞

y−2it−1

(x2 + 1)s+1

[

x+ i

(x2 + 1)
1
2

]− 1
2

e

( −1

24yc2(x+ i)
− y(x− i)

24

)

dxdy.

Taking absolute values we see that

‖U1(z, s+ 1, 1/2, χ)‖2 ≤ 4.85 +
∑

c>0

|S(1, 1, c, χ)|
c2σ+2

×
∫ ∞

0

∫ ∞

−∞

y−1

(x2 + 1)σ+1
exp

(−πy

12
− π

12yc2(x2 + 1)

)

dxdy

≤ 2

∫ ∞

−∞

1

(x2 + 1)σ+1
K0

( π

6c(x2 + 1)
1
2

)

dx,

where in the last inequality we used (5.3). Using Lemma 5.1 we obtain

‖U1(z, s+ 1, 1/2, χ)‖2 ≤ 4.85 + 6.46
∑

c>0

|S(1, 1, c, χ)|
c2σ+2

c
1
2 .

The result follows by (1.6) and (1.9). �

Proposition 5.3. Let s = σ + it with σ = 1/2 + δ/2 and 0 < δ ≤ 1/4. For any integer

n ≤ 0 we have

‖U1−n(z, s + 2,−1/2, χ)‖ ≤ 0.156ζ(1 + δ)τ((1− 24n)2)|nχ|−
7
4 .

Proof. Recalling that (1− n)χ = −nχ = |nχ|, we have

‖U1−n(z, s + 2,−1/2, χ)‖2 = (4π|nχ|)−3−2σΓ(2σ + 3) +
∑

c>0

S(1− n, 1− n, c, χ)

c2s+4

×
∫ ∞

0

∫ ∞

−∞

y−2it−1

(x2 + 1)s+2

[

x+ i

(x2 + 1)
1
2

]
1
2

e

( −|nχ|
yc2(x+ i)

− |nχ| · y(x− i)

)

dxdy.

Since |nχ| ≥ 23/24, we see that the absolute value is bounded by

3

128π4
|nχ|−4 +

∑

c>0

|S(1− n, 1− n, c, χ)|
c2σ+4

∫ ∞

0

∫ ∞

−∞

y−1

(x2 + 1)σ+2

× exp(2πnχy) exp

(

2πnχ

yc2(x2 + 1)

)

dxdy. (5.4)

By (5.3), the double integral in (5.4) becomes

2

∫ ∞

−∞

1

(x2 + 1)σ+2
K0

(

4π|nχ|
c(x2 + 1)

1
2

)

dx. (5.5)
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Using Lemma 5.1 and estimating with σ = 1/2, we see that (5.5) is bounded by 0.0026
(

c
|nχ|

)
7
2

.

Thus,

‖U1−n(z, s + 2,−1/2, χ)‖2 ≤ 3

128π4
|nχ|−4 + 0.0026|nχ|−

7
2

∑

c>0

|S(1− n, 1− n, c, χ)|
c

3
2
+δ

. (5.6)

From an argument as in [IK04, page 413] using [AA18, (2.27), (2.29)] we get

∞
∑

c=1

|S(1− n, 1− n, c, χ)|
c

3
2
+δ

≤ 16√
3
ζ2(1 + δ)τ((1− 24n)2)2.

Note that |nχ| ≥ 23/24. From this and (5.6) we obtain

‖U1−n(z, s + 2,−1/2, χ)‖2 ≤ 3

128π4
|nχ|−4 + 0.0241|nχ|−

7
2 ζ2(1 + δ)τ((1− 24n)2)2

≤ 0.0242|nχ|−
7
2 ζ2(1 + δ)τ((1− 24n)2)2.

Proposition 5.3 follows. �

6. Bounds for the Kloosterman zeta function

Now we can give a bound for the Kloosterman zeta function. Pribitkin’s main theorem
[Pri00] is an ineffective version of this result valid in more generality. In this section we will
prove the following theorem.

Theorem 6.1. Let n ≤ 0 and s = σ + it with σ = 1/2 + δ/2 and 0 < δ ≤ 1/4. Then

|Z1,n(s)| ≤ 189.91ζ2(1 + δ)τ((1− 24n)2)(1 + |t|) 1
2 |nχ|

1
4 .

The proof of Theorem 6.1 requires some preliminary results. Let L 1
2
(N,χ) denote the

L2-space of automorphic functions with respect to the Petersson inner product given by

(3.3). Define ∆ 1
2
:= y2

(

∂2

∂x2 +
∂2

∂y2

)

− iy
2

∂
∂x
. Then ∆ 1

2
has a unique self-adjoint extension to

L 1
2
(N,χ). Denote by λ0(1/2) ≤ λ1(1/2) ≤ · · · the discrete spectrum of ∆ 1

2
. From [Sar84,

Prop. 1.2] we have λ0(1/2) = 3/16.
By Lemma 3.1 we find that

Z1,n(s) = (I1,n(s, w)−Q1,n(s, w))
Γ
(

w + 1
4

)

Γ
(

s− 1
4

)

Γ(w + s− 1)Γ(w − s)
(−1)s+wπw−s−1(−i)

1
24w−1|nχ|w−s.

Now let w = s+ 2. Then

|Z1,n(s)| ≤ (|I1,n(s, s+ 2)|+ |Q1,n(s, s+ 2)|) |Γ
(

s+ 9
4

)

Γ
(

s− 1
4

)

|
|Γ(2s+ 1)| 4σ+1π|nχ|2. (6.1)

We have the following bound for |I1,n(s, s+ 2)|.

Proposition 6.2. Let s = σ + it = 1/2 + δ/2 + it with 0 < δ ≤ 1/4. Then

|I1,n(s, s+ 2)| ≤ 0.674τ((1− 24n)2)ζ2(1 + δ)|nχ|−
7
4 .
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Proof. From [GS83, (2.4)] and [Sar90, (A.2.9)] we see that

|I1,n(s, s+ 2)| = |〈U1(z, s, 1/2, χ),U1−n(z, s + 2,−1/2, χ)〉|
≤ (π/6)|s− 1/4||Rs(1−s)|‖U1(z, s+ 1, 1/2, χ)‖ ‖U1−n(z, s+ 2,−1/2, χ)‖

≤ (π/6)|s− 1/4|
distance(s(1− s), spectrum(∆ 1

2
))
‖U1(z, s + 1, 1/2, χ)‖ ‖U1−n(z, s + 2,−1/2, χ)‖,

where Rs(1−s) = (∆ 1
2
+ s(1− s))−1 is the resolvent of ∆ 1

2
.

For |t| > 1 we see that |s− 1/4| ≤ 1.07|t| and as in [GS83],

dist(s(1− s), spectrum(∆ 1
2
)) ≥ |t(2σ − 1)|.

Also we have ζ(1 + δ)/δ ≤ ζ2(1 + δ), so Propositions 5.2 and 5.3 give us

|I1,n(s, s+ 2)| ≤ 0.414τ((1− 24n)2)ζ2(1 + δ)|nχ|−
7
4 .

For |t| ≤ 1 we see that Re(s(1 − s)) ≤ 5/4. Since λ1(1/2) > 3.86 ([AA18, Corollary 5.3])
and λ0(1/2) = 3/16 we have

distance(s(1− s), spectrum(∆ 1
2
)) =

∣

∣s(1− s)− 3
16

∣

∣ = |s− 1/4| |s− 3/4| ≥ 1
8
|s− 1/4|.

Since ζ(1 + δ) ≥ ζ(5
4
) ≥ 4.59, for these values of t we have

|I1,n(s, s+ 2)| ≤ 0.674τ((1− 24n)2)ζ2(1 + δ)|nχ|−
7
4 . �

To obtain a bound for the Γ functions appearing in (6.1), we use the following lemma.

Lemma 6.3 ([Rad73], §34, Thm. A). Let 0 ≤ c ≤ 1.Then for Re(s) ≥ (1− c)/2 we have
∣

∣

∣

∣

Γ(s+ c)

Γ(s)

∣

∣

∣

∣

≤ |s|c.

Proposition 6.4. Let s = σ + it = 1/2 + δ/2 + it with 0 < δ ≤ 1/4. Then
∣

∣Γ
(

s+ 9
4

)

Γ
(

s− 1
4

)
∣

∣

|Γ(2s+ 1)| ≤ 5.84(1 + |t|) 1
2 .

Proof. Apply the duplication formula to obtain

|Γ(2s+ 1)| = |Γ(s+ 1/2)Γ(s+ 1)|π− 1
24σ.

Use the functional equation to obtain

Γ
(

s− 1
4

)

=
(

s− 1
4

)−1
Γ
(

s+ 3
4

)

,

Γ
(

s+ 9
4

)

=
(

s+ 5
4

)

Γ
(

s+ 5
4

)

.

Then by Lemma 6.3,
∣

∣Γ(s+ 9
4
)Γ
(

s− 1
4

)
∣

∣

|Γ(2s+ 1)| = π
1
24−σ

∣

∣s+ 5
4

∣

∣

∣

∣Γ
(

s+ 5
4

)

Γ
(

s + 3
4

)
∣

∣

∣

∣s− 1
4

∣

∣

∣

∣Γ(s+ 1)|Γ
(

s+ 1
2

)
∣

∣

≤ π
1
24−

1
2

∣

∣s+ 5
4

∣

∣ |s+ 1| 14
∣

∣s+ 1
2

∣

∣

1
4

∣

∣s− 1
4

∣

∣

.
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If |t| ≤ 1 we see that
|Γ(s+ 9

4)Γ(s−
1
4)|

|Γ(2s+1)| ≤ |Γ( 11
4 )Γ(

1
4)|

|Γ(2)| ≤ 5.84. If |t| ≥ 1 we have

∣

∣Γ
(

s+ 9
4

)

Γ
(

s− 1
4

)
∣

∣

|Γ(2s+ 1)| ≤ π
1
24−

1
2

∣

∣s+ 5
4

∣

∣

3
2

∣

∣s− 1
4

∣

∣

≤ π
1
24−

1
2

∣

∣

∣

∣

1 +
6

4s− 1

∣

∣

∣

∣

3
2
∣

∣s− 1
4

∣

∣

1
2 ≤ 2.51|t| 12 .

The proposition follows. �

Proof of Theorem 6.1. The theorem follows from Lemma 4.2, (6.1) and Propositions 6.2 and
6.4. �

7. Proof of Theorem 1.6

We use Perron’s formula as in [Dav80, §17]. Let f(s) = Z1,n

(

1+s
2

)

. We see that

∑

c≤x

S(1, n, c, χ)

c
=

1

2πi

∫ v+i∞

v−i∞
f(s)

xs

s
ds, (7.1)

where v > 1/2. Now for T > 0 and x ∈ Z+ 1/2 we have
∣

∣

∣

∣

∣

∑

c≤x

S(1, n, c, χ)

c
− 1

2πi

∫ v+iT

v−iT

f(s)
xs

s
ds

∣

∣

∣

∣

∣

=
1

2π

∣

∣

∣

∣

∫ v+i∞

v−i∞
f(s)

xs

s
ds−

∫ v+iT

v−iT

f(s)
xs

s
ds

∣

∣

∣

∣

<

∞
∑

c=1

|S(1, n, c, χ)|
c

(x

c

)v

min

(

1, T−1
∣

∣

∣
log

x

c

∣

∣

∣

−1
)

. (7.2)

Let v = 1/2 + δ where δ is as in Theorem 1.6. Then
∞
∑

c=1

|S(1, n, c, χ)|
c

(x

c

)v

min(1, T−1
∣

∣

∣
log

x

c

∣

∣

∣

−1

) ≤ x
1
2
+δ

T

∞
∑

c=1

|S(1, n, c, χ)|
c

3
2
+δ

∣

∣

∣
log

x

c

∣

∣

∣

−1

.

Now we split the sum into the ranges c ≤ 3
4
x, 3

4
x < c < x, x < c < 5

4
x, and c ≥ 5

4
x. Note

that 1
log x−log c

≤ x
x−c

when c < x. So for x ≥ 10000 we have

x− 1
2

∑

c=⌊ 3x
4 ⌋+1

|S(1, n, c, χ)|
c

3
2
+δ

∣

∣

∣
log

x

c

∣

∣

∣

−1

≤
x− 1

2
∑

c=⌊3x
4 ⌋+1

|S(1, n, c, χ)|
c

3
2
+δ

x

x− c
(7.3)

≤ 4ℓ(δ)

3

∫ x− 1
2

3x
4

dt

x− t
+

8ℓ(δ)

3

≤ 1.523ℓ(δ) logx.

Similarly, for x ≥ 10000 we see that

⌈ 5x
4 ⌉−1
∑

c=x+ 1
2

|S(1, n, c, χ)|
c

3
2
+δ

∣

∣

∣
log

x

c

∣

∣

∣

−1

≤ ℓ(δ)

⌈ 5x
4 ⌉−1
∑

c=x+ 1
2

1

c− x
≤ 1.142ℓ(δ) logx. (7.4)

We have
∑

c≤ 3x
4

|S(1, n, c, χ)|
c

3
2
+δ

∣

∣

∣
log

x

c

∣

∣

∣

−1

≤
∑

c≤ 3x
4

|S(1, n, c, χ)|
c

3
2
+δ

∣

∣

∣

∣

log
4

3

∣

∣

∣

∣

−1

≤ 3.5
∑

c≤ 3x
4

τ(c)

c1+δ
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and
∑

c≥ 5x
4

|S(1, n, c, χ)|
c

3
2
+δ

∣

∣

∣
log

x

c

∣

∣

∣

−1

≤
∑

c≥ 5x
4

|S(1, n, c, χ)|
c

3
2
+δ

∣

∣

∣

∣

log
4

5

∣

∣

∣

∣

−1

≤ 4.5
∑

c≥ 5x
4

τ(c)

c1+δ
.

By (1.9) we obtain

∑

c≤ 3x
4

+
∑

c≥ 5x
4

|S(1, n, c, χ)|
c

3
2
+δ

∣

∣

∣
log

x

c

∣

∣

∣

−1

≤ 4.5

∞
∑

c=1

τ(c)

c1+δ
= 4.5ζ2(1 + δ). (7.5)

Therefore, by (7.2), (7.3), (7.4), and (7.5) we obtain
∣

∣

∣

∣

∣

∑

c≤x

S(1, n, c, χ)

c

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ 1
2
+δ+iT

1
2
+δ−iT

f(s)
xs

s
ds

∣

∣

∣

∣

∣

+
(

4.5ζ2(1 + δ) + 3ℓ(δ) log x
) x

1
2
+δ

T
. (7.6)

From [GS83, (3.2)] we see that Zm,n

(

1+s
2

)

is holomorphic for Re(s) > 0 (the only possible
pole at s = 1/2 does not arise since n ≤ 0). Thus

∫

∂E

Zm,n

(

1 + s

2

)

xs

s
ds = 0, (7.7)

where E is the rectangle [δ, 1/2 + δ] × [−T, T ]. We obtain a bound for Z1,n

(

1+δ+it
2

)

using

Theorem 6.1 and a bound for Z1,n

(

3
2
+δ+it

2

)

using the Weil bound. We require the Phragmén-

Lindelöf principle for a strip.

Proposition 7.1 ([IK04], Thm. 5.53). Let f be a function holomorphic on an open neigh-

borhood of a strip a ≤ σ ≤ b, for some real numbers a < b, such that |f(s)| ≪ exp(|s|A) for
some A ≥ 0 and a ≤ σ ≤ b. Assume that

|f(a+ it)| ≤ Ma(1 + |t|)α,
|f(b+ it)| ≤ Mb(1 + |t|)β

for t ∈ R. Then

|f(σ + it)| ≤ Md(σ)
a M

1−d(σ)
b (1 + |t|)αd(σ)+β(1−d(σ))

for all s in the strip, where d is the linear function such that d(a) = 1, d(b) = 0.

Proposition 7.2. Let n ≤ 0 and f(s) = Z1,n(
1+s
2
). For δ ≤ σ ≤ 1/2 + δ with 0 < δ ≤ 1/4

we have

|f(σ + it)| ≤ 189.91ζ2(1 + δ)τ((1− 24n)2)|nχ|
1
4 (1 + |t/2|)−σ+ 1

2
+δ.

Proof. By Theorem 6.1, we have

|f(δ + it)| ≤ 189.91ζ2(1 + δ)τ((1− 24n)2)|nχ|
1
4 (1 + |t/2|) 1

2 . (7.8)

Also, by (1.9)

∣

∣

∣

∣

f

(

1

2
+ δ + it

)
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

c=1

S(1, n, c, χ)

c
3
2
+δ+it

∣

∣

∣

∣

∣

≤
∞
∑

c=1

c
1
2 τ(c)

c
3
2
+δ

= ζ2(1 + δ).
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Note that the line d such that d(δ) = 1 and d(1/2 + δ) = 0 is d(σ) = −2σ + 1 + 2δ. By
Phragmén-Lindelöf, for δ ≤ σ ≤ 1/2 + δ we have

|f(σ + it)| ≤
(

189.91ζ2 (1 + δ) τ
(

(1− 24n)2
)

|nχ|
1
4

)−2σ+1+2δ
(

ζ2 (1 + δ)
)2σ−2δ

(1 + |t/2|)−σ+ 1
2
+δ

= ζ2 (1 + δ)
(

189.91τ
(

(1− 24n)2
)

|nχ|
1
4

)−2σ+1+2δ

(1 + |t/2|)−σ+ 1
2
+δ . �

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. For x < 10000 this follows from
∣

∣

∣

∑

c≤x
Ac(n)

c

∣

∣

∣
≤ x. Let x ≥ 10000 and

set T = x
1
3 . By Proposition 7.2 we have

∣

∣

∣

∣

∣

∫ δ+iT

1
2
+δ+iT

f(s)
xs

s
ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ 1
2
+δ

δ

f(σ + iT )
xσ+iT

σ + iT
dσ

∣

∣

∣

∣

∣

≤ 189.91ζ2(1 + δ)τ((1− 24n)2)|nχ|
1
4 (1 + T/2)

1
2
+δ

∫ 1
2
+δ

δ

(1 + T/2)−σ xσ

|σ + iT |dσ

≤ 189.91ζ2(1 + δ)|nχ|
1
4 τ((1− 24n)2)(1 + T/2)

1
2
+δ

T
·

(

x
1+T/2

)
1
2
+δ

−
(

x
1+T/2

)δ

log
(

x
1+T/2

) .

Disregarding the negative term and using the estimate log
(

x
1+T/2

)

≥ 6.74 gives
∣

∣

∣

∣

∣

∫ δ+iT

1
2
+δ+iT

f(s)
xs

s
ds

∣

∣

∣

∣

∣

≤ 28.18ζ2(1 + δ)τ((1− 24n)2)|nχ|
1
4x

1
6
+δ. (7.9)

The same bound holds for the bottom of the rectangle. To estimate the integral over the

left side of the rectangle we use (7.8) to see that
∫ δ−iT

δ+iT
f(s)x

s

s
ds is bounded by

189.91ζ2(1 + δ)τ((1− 24n)2)|nχ|
1
4xδ

(

2

∫ T

2

(1 + t/2)
1
2

|δ + it| dt+ 2

∫ 2

0

(1 + t/2)
1
2

|δ + it| dt

)

. (7.10)

Using the inequality
∫ T

2

(

1
2t
+ 1

t2

)
1
2 dt ≤

∫ T

2
1

(2t)
1
2
dt we see that the first term in the expansion

of (7.10) is bounded by

537.15ζ2(1 + δ)τ((1− 24n)2)|nχ|
1
4xδT

1
2 . (7.11)

Note that
∫ 2

0

(

1 + |t|/2
δ2 + t2

)
1
2

dt ≤
√
2

∫ 2

0

(

1

δ2 + t2

)
1
2

dt =
1√
2
log
(

δ2 + 4
√
δ2 + 4 + 8

)

−
√
2 log (δ) .

Since 0 < δ ≤ 1/4 we have 1√
2
log
(

δ2 + 4
√
δ2 + 4 + 8

)

≤ 1.77, so

∫ 2

0

(

1 + |t|/2
δ2 + t2

)
1
2

dt ≤ 2.7| log δ|.

Thus, the second term in the expansion of (7.10) is bounded by

1025.52ζ2(1 + δ)τ((1− 24n)2)|nχ|
1
4xδ| log δ|. (7.12)
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Thus (recall that x ≥ 10000 and 0 < δ ≤ 1/4),
∣

∣

∣

∣

∫ δ−iT

δ+iT

f(s)
xs

s
ds

∣

∣

∣

∣

≤ ζ2(1 + δ)τ((1− 24n)2)|nχ|
1
4

(

537.15x
1
6
+δ + 1025.52xδ| log δ|

)

≤ 608.42ζ2(1 + δ)τ((1− 24n)2)| log δ||nχ|
1
4x

1
6
+δ. (7.13)

Hence, using (7.7),(7.9), and (7.13) we get
∣

∣

∣

∣

∣

∫ 1
2
+δ+iT

1
2
+δ−iT

f(s)
xs

s
ds

∣

∣

∣

∣

∣

≤ 649.08ζ2(1 + δ)τ((1− 24n)2)| log δ||nχ|
1
4x

1
6
+δ. (7.14)

The result follows from (2.4) and (7.6). �

8. Proof of Theorem 1.2

We begin with a lemma.

Lemma 8.1. Let y ≥ 2 and q ≤ 1. Then
∫ λ(n)

y

e
λ(n)

t t−
3
2
+q dt ≤ 4

3− 2q
λ(n)−1y1/2+qe

λ(n)
y .

Proof. Using the Taylor expansion for e
λ(n)
t we have

∫ λ(n)

y

e
λ(n)
t t−

3
2
+q dt ≤ λ(n)−1y1/2+q

∞
∑

m=1

(

λ(n)
y

)m+1

(m+ 1)!

4

3− 2q

≤ 4

3− 2q
λ(n)−1y1/2+qe

λ(n)
y . �

Next is the proof of Theorem 1.5.

Proof of Theorem 1.5. By partial summation and (2.6), we have

S(n) =
√
24πλ(n)

1
2

(

I 1
2
(λ(n))− I 1

2

(

λ(n)

2

)

−
∫ ∞

2

(

I 1
2

(

λ(n)

t

))′
∑

c≤t

Ac(n)

c
dt

)

. (8.1)

Note that the convergence of the integral in (8.1) follows from Theorem 1.6. From (5.4) of
[AA16] we have

∣

∣

∣

∣

(

I 1
2

(

λ(n)

x

))′∣
∣

∣

∣

=
λ(n)

2x2

(

I− 1
2

(

λ(n)

x

)

+ I 3
2

(

λ(n)

x

))

,

so
∣

∣

∣

∣

∣

∫ ∞

2

(

I 1
2

(

λ(n)

t

))′
∑

c≤t

Ac(n)

c
dt

∣

∣

∣

∣

∣

≤
∫ ∞

2

λ(n)

2t2

(

I− 1
2

(

λ(n)

t

)

+ I 3
2

(

λ(n)

t

))

∣

∣

∣

∣

∣

∑

c≤t

Ac(n)

c

∣

∣

∣

∣

∣

dt. (8.2)
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Let f(x) =
(

I− 1
2
(x) + I 3

2
(x)
)

x
1
2 ex. We have f ′(x) > 0, so f(x) ≤ f(1) < 4.146 for x ≤ 1

and
I− 1

2
(x) + I 3

2
(x) < 4.146x− 1

2 e−x for x ≤ 1. (8.3)

Let g(x) =
(

I− 1
2
(x) + I 3

2
(x)
)

x
1
2 e−x. We have g′(x) > 0, so g(x) ≤ limx→∞ g(x) < 0.798 for

x ≥ 1. Thus,

I− 1
2
(x) + I 3

2
(x) < 0.798x− 1

2 ex for x ≥ 1. (8.4)

Using (8.2), (8.3), and (8.4) we see that
∣

∣

∣

∣

∣

∫ ∞

2

(

I 1
2

(

λ(n)

t

))′
∑

c≤t

Ac(n)

c
dt

∣

∣

∣

∣

∣

≤ 0.399
√

λ(n)

∫ λ(n)

2

e
λ(n)

t t−
3
2

∣

∣

∣

∣

∣

∑

c≤t

Ac(n)

c

∣

∣

∣

∣

∣

dt+ 2.073
√

λ(n)

∫ ∞

λ(n)

t−
3
2

∣

∣

∣

∣

∣

∑

c≤t

Ac(n)

c

∣

∣

∣

∣

∣

dt. (8.5)

Using the trivial bound |Ac(n)| ≤ c and Lemma 8.1 we see that the first term in (8.5) is
bounded by

4.515
e

λ(n)
2

√

λ(n)
. (8.6)

From Corollary 1.7 we see that the second term in (8.5) is bounded by

24.88
(

19094.8τ((24n− 23)2)(n− 1/24)
1
4 + 25.35(12 + log λ(n))

)

λ(n)
5
12 . (8.7)

We can suppose n ≥ 10000. Then by (8.7) the second term in (8.5) is bounded by

0.001e
λ(n)
2

√

λ(n)
. (8.8)

From (8.5), (8.6), and (8.8) we obtain
∣

∣

∣

∣

∣

∫ ∞

2

I 1
2

(

λ(n)

t

)′
∑

c≤t

Ac(n)

c
dt

∣

∣

∣

∣

∣

≤ 4.516e
λ(n)
2

√

λ(n)
.

Noting that

|ES(n)| ≤
√
24πλ(n)

1
2

(

∣

∣

∣

∣

I 1
2

(

λ(n)

2

)
∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ ∞

2

I 1
2

(

λ(n)

t

)′
∑

c≤t

Ac(n)

c
dt

∣

∣

∣

∣

∣

)

,

the Theorem follows for λ(n) > 256. For λ(n) ≤ 256 it can be verified by direct computation.
�

We have the following result for p(n).

Lemma 8.2. For n ≥ 1 we have

p(n) =
2
√
3

24n− 1

(

1− 1

λ(n)

)

eλ(n) + Ep(n)

where

Ep(n) ≤
5e

λ(n)
2

24n− 1
.
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Proof. For λ(n) > 573 this follows from [Leh38, (4.14)]. For λ(n) ≤ 573 it can be verified by
direct computation. �

Proof of Theorem 1.2. The theorem follows by (2.7), Theorem 1.5, and Lemma 8.2. �

Proof of Theorem 1.3. The proof is similar to the proof of Theorem 1.2. �

Proof of Corollary 1.4. From Lemma 8.2 we see that
√
24n− 1

2π
p(n) =

√
3

π
√
24n− 1

eλ(n) −
√
3

π
√
24n− 1

· e
λ(n)

λ(n)
+

√
24n− 1

2π
Ep(n).

By Lemma 8.2 and Theorem 1.2 the result follows. �
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