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Abstract
While studying the location of the zeros of the Eisenstein series Ejx(z), Rankin
considered the determinants A,, of an associated Hankel matrix. He observed that
the first few possess remarkable factorizations, and expressed the hope that a general
theorem explaining these factorizations could be found. In this note we provide such
a theorem by giving an explicit formula for A, using work of Kaneko and Zagier
on Atkin polynomials.

1. Introduction

The zeros of Eisenstein series were studied by R. Rankin in [5], where he showed
that for & = 28, 30, 32, 34 and 38 the zeros of Ey, lie on the unit circle. Soon after R.
Rankin’s result, F.K.C. Rankin and Swinnerton-Dyer [4] proved that the zeros of
FE)}. lie on the unit circle for all even k > 4. In this note we confirm an observation
made in [5] about the determinants A,, = |H,| of the Hankel matrix given by
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where the g, are defined as follows. Let

Ei(z) ::% Z (cz+d)7F

and let A(z) be the unique normalized weight 12 cusp form. Let j be the modular
3
invariant defined by j(z) := %((:)) and with Fourier expansion
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where ¢ = €?™*, For a function F' that is meromorphic on a fundamental domain
F, write R(F) for the sum of the residues of F' at points of F and

) =a" ) alq"
n=0
Then g, is defined by

gy = 2miR(j" By) = al) =24 a0 (m), (2)

m=1

where o(n) =3, d and Ea(z) =1 —24 >0 o(n)g™. The first few values are
go=1, g1 =720, go=911520 g5 = 1301011200, g4 = 1958042030400.

This is sequence A030185 in [6]. Rankin gave the values up to Aj3 in a table by
their prime factorization; the last of these is of size approximately 2.79 - 10483 (the
computations in Rankin’s paper were made by Mr. Stephen Muir of the Atlas Com-
puter Laboratory in Chilton, Didcot). Rankin went on to say that “... they possess
remarkable factorizations; each of them is a highly composite number expressible as
a product of powers of small primes. These results are given in §4 in the hope that
they may stimulate someone to prove a general theorem about these determinants.”
Here we prove such a theorem.

Theorem 1. Forn > 1, let Hy, be as in (1) and A, = |H,|. Then,

An _ 2n2+4n.3n2+2n.5n'7n.13n.H (

r=2

(12r — 13)(12r — T)(12F — 5)(12r 4+ 1)\ n—r+1
(2r —1)2(r—1)r ) ’

Note that the largest prime that can appear in the factorization of A,, is at most
12n 4+ 1.

2. Proof of Theorem 1

Recall that if V is the space of polynomials in one variable over a field K, and
¢ 'V — K is a linear functional, then one can consider the scalar product on
V defined by (f,g9) = ¢(fg). One can also consider the family (which for generic
¢ exists and is unique) of monic polynomials which are mutually orthogonal with
respect to the scalar product.

Atkin [2, page 3] defined a sequence of polynomials A, () € Q]j], one for each
degree n, as the orthogonal polynomials with respect to a scalar product. The
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particular scalar product used by Atkin is defined in several equivalent ways in [2,
Proposition 3], one of them being
(f,g) := constant term of fgF5 as a Laurent series in g.
Then from the definition (2) we see that
gv = (4", 1).

Proof of Theorem 1. A recursion for the Atkin polynomials A4, is given by ([2, equa-
tion (18)]):

An+1(j) = (J - (>‘2n + )‘2n+1))An(j) - >‘2n—1/\2nAn—1(j)a (3)
where the numbers \,, are defined by the continued fraction expansion
- 9
0
ngxk = 1- Xz - (4)
k=0 S e

By [3, Theorem 29|, we can use the recurrence in (3) to give a formula for A, in
terms of the \,,:

n

B = ogcz'lsﬂtgn(gi”) = 1:[1()\27«—1)\27")"7”1. (5)

Equation (19) of [2] gives an explicit formula for the A,:

A =720, A, = 12(6 + (n_i):) (6 + (_;)n) for n > 1. 6)

For r > 1 this gives
_ (_1)27"—1 (_1)27‘—1 (_1)2T (_1)2r

har-1dar = 12(8+ == ) (64 S5 =7)12(8+ =) (6 + )
B 36(12r — 13)(12r — 7)(12r — 5)(12r + 1)
N (2r —1)2(r —1)r

Plugging this formula into equation (5) and simplifying yields the result. O

Let v,(m) be the highest power of p that divides a non-zero integer m. From
Theorem 1 one can obtain v,(A,,) for any prime p. In the case p = 2 it has a simple
expression.

Corollary 1. We have

n

va(Ay) =4n — sa(n) + 2252(7“),

r=1

where so(r) is the sum of the digits of r in base 2.
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Proof. From Theorem 1 we see that

va(Ay) =n® +4n — vy ( ﬁ ((r— l)r)n_T—H)’

r=2

so we only need to show that vy ( [T, ((r— l)r)n_rﬂ) =n?=23""_ so(r)+sa2(n).
Using the fact that vo(r) = 1+ so(r — 1) — s2(r) we obtain

( ﬁ ’l" _ 1 n r+1)
r=2

= (n—r+1)(va(r) + va(r — 1))

:27’ n n—2
=23 (n—r+ 1) =D =+ Dsa(r) + 3 (n—r = Dsa(r)
n—2
=n®—s(n) —2s5(n— 1)+ Y _sa(r)(n—r—1-(n—r+1))
:n2—2252(1")—|—52(n) O

We point out that the sequence (3", s2(7)),, is sequence A000788 in [6].

As seen in [2], there are many ways to approach the Atkin polynomials. In this
spirit, we briefly explain another way in which one could obtain a closed formula
for A,. From Section 4 of [1] we have

n

Ay = ([ Ao - [[AL P 1A DI = [T (A, 42). (7)

i=0
For n > 1, ([2, Proposition 6])
(A, 4,) = —196m+1 (T1/12)n(5/12)(7/12)n (13/12)

(2n — 1)!(2n)! ’ ®)
where (), =x(x +1)---(x +n—1) and (Ao, Ag) = (1,1) = 1. Thus,
- —1/12);(5/12);(7/12);(13/12
1:[ 2el+1 /12); ((2/Z _)13.(/21)) i(13/ ) )
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