UIUC Math 580 Comprehensive Exam, January 2020

Each problem below is worth 10 points. The exam will be scored out of 100. A good performance in both Part 1 and Part 2 is required to pass this exam.

Answers without a proof or with an incorrect proof may not receive no points.

Part 1

1. Give a combinatorial (counting) argument that proves

$$
\sum_{k=1}^{n} k \cdot k!=(n+1)!-1
$$

2. Let $c(m, n)$ be the number of surjective functions $f:[n] \rightarrow[m]$ where $[j]:=\{1,2,3,4, \ldots, j\}$. By the inclusion-exclusion principle, or otherwise, determine an explicit formula for $c(m, n)$.
3. Let F_{k} be the adjusted Fibonacci number, i.e.,

$$
\left(F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, \ldots\right)=(1,1,2,3,5, \ldots),
$$

and $F_{k}=F_{k-1}+F_{k-2}$ for $k \geq 2$. Evaluate (with proof)

$$
\sum_{k=0}^{n} F_{k+1}\binom{n}{k}
$$

4. By a combinatorial argument involving integer partitions/Ferrers diagrams, prove the following identity of ordinary generating series

$$
\prod_{k=1}^{\infty} 1+x^{k}=\sum_{j=0}^{\infty} \frac{x^{j^{2}}}{\prod_{t=1}^{j}\left(1-x^{2 t}\right)}
$$

5. Let K_{n} be the complete graph on n vertices. A collection \mathcal{C} of (undirected) paths covers K_{n} if each vertex is in exactly one of the paths. Prove that the number of ways to cover K_{n}, by paths with at least one vertex, is

$$
\left[\frac{x^{n}}{n!}\right] \exp \left(\frac{x(2-x)}{2(1-x)}\right)
$$

Part 2

1. Prove that a graph $G=(V, E)$ with at least 4 vertices is 3-connected if and only if for arbitrary three vertices $x, y, z \in V$ and any edge e disjoint from z there exists an x, y-path that passes through e and avoids z.
2. In a plane 3-regular connected graph G, every vertex belongs to two faces of length 4 and to one face of length 36 . How many edges does G have?
3. Let $k \geq 4$ and $n-k \geq 3$. How few edges may have an n-vertex graph G with chromatic number k and minimum degree at least 2 ?
4. State the Szemerédi Regularity Lemma. This means that you need to define all notions used, such as ϵ-regular partitions, etc.
5. For each statement below, determine if it is true or false. If it is true, give a proof. If it is false, provide a counterexample.
a) Every 4-regular 4-connected simple graph has a perfect matching;
b) Every 3-regular 2-connected graph has a perfect matching;
c) Every 3-regular 3-connected graph has three disjoint perfect matchings;
d) Every 3-regular bipartite graph has three disjoint perfect matchings.
