Logic Comprehensive Exam (Math 570), January 27, 2021

Do all four problems. Explain your answers except when asked to "indicate" something. The four problems have equal weight. Throughout: m, n range over $\mathbb{N}:=\{0,1,2,3, \ldots\} ; L$ is a language; given a set Σ of L-sentences, $\operatorname{Th}(\Sigma)$ is the set of L-sentences σ such that $\Sigma \vdash \sigma$; for an L-structure $\mathcal{A}, \operatorname{Th}(\mathcal{A})$ is the set of L-sentences true in \mathcal{A}; computable has the same meaning as recursive, and computably generated the same as recursively enumerable (for those used to other terminology).

1. Let L have just the binary relation symbol $<$. Let σ be the sentence $\forall x \exists y(x<y)$.
(i) Indicate a finite set Σ of L-sentences whose models are exactly the (nonempty) totally ordered sets $(A ;<)$. Here "ordered" is taken in the strict sense where $a<b$ implies $a \neq b$.
(ii) Show that σ is not Σ-equivalent to any existential L-sentence.
(iii) Show that σ is not Σ-equivalent to any universal L-sentence.
2. Let L have just the unary relation symbol P.
(i) Indicate a set Σ of L-sentences whose models are exactly the L-structures $\mathcal{A}=(A ; P)$ such that $P \subseteq A$ is infinite.
(ii) Determine the countable models of Σ up to isomorphism.
(iii) Show that Σ is not complete.
(iv) Indicate a family $\left(\Sigma_{i}\right)_{i \in I}$ where each $\Sigma_{i} \supseteq \Sigma$ is a complete set of L-sentences and every model of Σ is a model of Σ_{i} for exactly one $i \in I$.
(v) Show that $\operatorname{Th}(\Sigma)$ is decidable. (You can argue informally using "decidable" intuitively.)
3. Let $\mathcal{N}=(\mathbb{N} ;<, 0, S,+, \cdot)$ be the standard model of arithmetic. Let PA be the usual set of axioms of (first-order) Peano Arithmetic; recall that PA includes an induction scheme.
(i) $\mathcal{A} \equiv \mathcal{N}$ for all $\mathcal{A} \models \mathrm{PA}$. True or false?
(ii) Is there a model \mathcal{A} of PA such that $\operatorname{Th}(\mathcal{A})$ is decidable?
(iii) Show that there is a countable model $\mathcal{A}=(A ;<, \ldots)$ of PA with an element $a \in A$ such that $n<a$ and $a \in n A$ for all n; here \mathbb{N} is identified with its image in A via the embedding $n \mapsto\left(S^{n} 0\right)^{\mathcal{A}}: \mathcal{N} \rightarrow \mathcal{A}$ and $n A:=\{n \cdot a: a \in A\}$.
(iv) Let \mathcal{A} be as in (iii). Show that the subset \mathbb{N} of A is not definable in \mathcal{A}.
4. Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be computable such that f is injective, $f(\mathbb{N})$ is computable, and $f(n) \leq g(n)$ for all n.
(i) Show that $g(\mathbb{N})$ is computable. (You can argue informally using "computable" intuitively.)

Let $A, B \subseteq \mathbb{N}$. (Continued on other side.)
(ii) Show that if A, B are computably generated, then there are disjoint computably generated sets $A^{*} \subseteq A$ and $B^{*} \subseteq B$ such that $A^{*} \cup B^{*}=A \cup B$.
(iii) Suppose $A \cap B=\emptyset$ and the complements of A and B are computably generated. Use (ii) to show there is a computable set $S \subseteq \mathbb{N}$ such that $A \subseteq S$ and $S \cap B=\emptyset$.

