Probability Comprehensive Exam, August 2020

1. (20 points) Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed positive random variables with $P\left(X_{1}>x\right)=e^{-x}$ for all $x \geq 0$. Show that

$$
\limsup _{n \rightarrow \infty} \frac{X_{n}-\ln n}{\ln \ln n}=1
$$

almost surely.
2. (20 points) Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with $E X_{1}=0$ and $E X_{1}^{2}=1$. Show that

$$
\frac{\sqrt{n} \sum_{m=1}^{n} X_{m}}{\sum_{m=1}^{n} X_{m}^{2}}
$$

converges weakly to a standard normal random variable.
3. (20 points) Let Y_{1}, Y_{2}, \ldots be nonnegative independent and identically distributed random variables with $E\left(Y_{1}\right)=1$ and $P\left(Y_{1}=1\right)<1$. Put $\mathcal{F}_{n}=\sigma\left\{Y_{1}, \ldots, Y_{n}\right\}$. (i) Show that $X_{n}=\prod_{m \leq n} Y_{m}$ is a martingale with respect to \mathcal{F}_{n}. (ii) Show that X_{n} converges to zero almost surely as $n \rightarrow \infty$.
4. (20 points) Let $\xi_{i, n}, i, n \geq 0$ be independent identically distributed non-negative integer valued random variables with a common expectation μ and common variance $\sigma^{2} \in(0, \infty)$. Define a sequence $Z_{n}, n \geq 0$ by $Z_{0}=1$ and

$$
Z_{n+1}= \begin{cases}\xi_{1, n+1}+\cdots+\xi_{Z_{n}, n+1}, & Z_{n}>0 \\ 0, & Z_{n}=0\end{cases}
$$

Put $\mathcal{F}_{n}=\sigma\left(\xi_{i, m}: i \geq 1,1 \leq m \leq n\right)$ and $X_{n}=\frac{Z_{n}}{\mu^{n}}$. (a) Show that X_{n} is a martingale with respect to \mathcal{F}_{n}. (b) Show that if $\mu \leq 1$, then $Z_{n}=0$ for all n sufficiently large. (c) Show that

$$
E X_{n}^{2}=1+\sigma^{2} \sum_{k=2}^{n+1} \mu^{-k}
$$

by proving the identities

$$
E\left(X_{n}^{2} \mid \mathcal{F}_{n-1}\right)=X_{n-1}^{2}+E\left(\left(X_{n}-X_{n-1}\right)^{2} \mid \mathcal{F}_{n-1}\right)
$$

and

$$
E\left(\left(X_{n}-X_{n-1}\right)^{2} \mid \mathcal{F}_{n-1}\right)=\sigma^{2} \mu^{-2 n} Z_{n-1} .
$$

(d) Show that, if $\mu>1, X_{n}$ converges in L^{2}.
5. (20 points) Suppose that X_{n} is a nonnegative submartingale with respect to a filtration \mathcal{F}_{n}. Show that for any $a>0$ and any positive integer N we have the following Doob's inequality

$$
P\left(\max _{1 \leq n \leq N} X_{n} \geq a\right) \leq \frac{1}{a} \int_{\left\{\max _{1 \leq n \leq N} X_{n} \geq a\right\}} X_{N} d P .
$$

