Instructions. Do all problems. Each problem is worth 10 points. Justify all your answers. Good Luck!

Notation:

We denote the set of complex numbers by \mathbb{C}.

1. Recall $\cosh z=\frac{1}{2}\left(e^{z}+e^{-z}\right)$ and $\sinh z=\frac{1}{2}\left(e^{z}-e^{-z}\right)$. Find all complex solutions $z=x+i y$ of the inequality

$$
|\cosh z|^{2}-|\sinh z|^{2} \geq 1
$$

2. Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin (\pi x) d x}{x\left(x^{2}-2 x+2\right)}
$$

3. Find a conformal mapping of the domain $D=\{z \in \mathbb{C}:|z|>1,|z-i|<\sqrt{2}\}$ onto the upper half-plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.
Hint. You can find the mapping as a composition of linear fractional transformations (Möbius transformations) and powers of z. Carefully sketch all your intermediate domains, if any.
4. Let $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ be an injective analytic function. Suppose $\lim _{z \rightarrow \infty} f(z)=0$. Prove $f(z)=a / z$, where $a \in \mathbb{C}$ is a constant.
Hint. Determine the type of the singularity of f at 0 .
5. Write Log for the principal branch of the logarithm.
(a) Prove

$$
\log z=-2\left[\left(\frac{1-z}{1+z}\right)+\frac{1}{3}\left(\frac{1-z}{1+z}\right)^{3}+\frac{1}{5}\left(\frac{1-z}{1+z}\right)^{5}+\ldots\right]
$$

when $\operatorname{Re} z>0$.
(b) Justify that the series converges normally.
6. Let $a \in \mathbb{C}$ be a constant with $|a| \geq e$. Suppose n is a positive integer.
(a) Prove the equation $a z^{n}=\cosh z$ has n solutions (counting multiplicity) in the unit disk $\{z:|z|<1\}$.
(b) Show that if z_{0} is a solution, then its multiplicity (order) cannot equal 3 or higher.

