Math 540 Comprehensive Examination, August 2020

Solve five of the following six. Each problem is worth 20 points. The Lebesgue measure is denoted by m.

1. Let f be a non-negative integrable function obeying

$$\int_{\mathbb{R}} |x|^n f(x) dx \le C \,, \,\, \forall n \in \mathbb{N} \,,$$

where $C \in \mathbb{R}$ is a constant independent of n. Prove that f(x) = 0 a.e. $x \in (-\infty, -1) \cup (1, \infty)$.

2. Let $\theta \in [0,1] \setminus \mathbb{Q}$. On the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ consider the rotation R_{θ} given by $R_{\theta}(e^{2\pi i t}) := e^{2\pi i (t+\theta)}$. Show that if $f \in L^2(\mathbb{T})$ is such that

$$f(R_{\theta}(e^{2\pi it})) = f(e^{2\pi it})$$
 for almost every $t \in [0, 1)$,

then f is a.e. constant.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz function, that is there exists $0 < M < \infty$ such that

$$|f(x) - f(y)| \leq M|x - y|, \qquad \forall x, y \in \mathbb{R}.$$

Show that the set f(E) is Lebesgue measurable for every Lebesgue measurable set E.

4. Consider the set S of polynomials on [0, 1], which vanish at 0. Prove that S is dense in $\{f \in C[0, 1] : f(0) = 0\}$.

5. Let S denote the unite square $[0,1] \times [0,1]$ in \mathbb{R}^2 . Let $f, g : [a,b] \to \mathbb{R}$ be two continuous functions of bounded variation on a bounded closed interval [a,b], a < b. Define the curve $\gamma : [a,b] \to \mathbb{R}^2$ by

$$\gamma(x) = (f(x), g(x)), x \in [a, b].$$

Prove that the trace of the curve γ , that is, $\gamma([a, b])$ cannot contain the unit square S.

6. Construct an open set $U \subseteq [0,1]$ such that (i) U is dense in [0,1], (ii) Lebesgue measure m(U) < 1, (iii) for every $a, b \in \mathbb{R}$, a < b, Lebesgue measure $m(U \cap (a,b)) > 0$.