Math 530 Comprehensive Exam
 August 2020

Problem 1 (30 points)

Consider the number field $F=\mathbb{Q}(\alpha)$ with α a root of $f(x)=x^{3}+x-1$ (which is irreducible over $\mathbb{Q})$. For this question, you may use without proof the following facts:

- The ring of integers \mathcal{O}_{F} of F is $\mathbb{Z}[\alpha]$.
- The discriminant d_{F} of F is -31 .
- The polynomial $f(x)$ has precisely one root in \mathbb{R}.
(a). Which primes ramify in F ? Give a one sentence justification for your answer.
(b). Compute the prime decomposition of 2 and of 3 in \mathcal{O}_{F}. Give generators for your prime ideals and determine their residue degrees.
(c). Is F / \mathbb{Q} Galois? Briefly justify your answer.
(d). Compute the class number of F. Justify your answer.
(e). Compute the structure of \mathcal{O}_{F}^{\times}(including the torsion subgroup). Justify your answer.

Problem 2 (20 points)

(a). Show that if p is a prime for which $p \equiv 2 \bmod 3$, then every integer that is prime to p has a cubic root in \mathbb{Z}_{p}.
(b). Does every integer that is prime to 3 have a cubic root in \mathbb{Q}_{3} ? Prove it or give an counterexample.

Problem 3 (30 points)

Let d be an odd, square-free integer. Let $F=\mathbb{Q}(\sqrt{d})$. Show that $\mathbb{Q}(\zeta)$ is the smallest cyclotomic field containing F, where ζ is a primitive $\left|d_{F}\right|$-th root of unity, as follows. (You may wish to use the fact that the discriminant $d_{F}=d$ for $d \equiv 1 \bmod 4$, and $d_{F}=4 d$ for $d \equiv 3 \bmod 4$.)
(a). Show that for any odd prime $p, \mathbb{Q}\left(\sqrt{p^{*}}\right)$ is the unique quadratic subfield of $\mathbb{Q}\left(\zeta_{p}\right)$. Here $p^{*}=(-1)^{(p-1) / 2} p$. Hint: Consider the ramification of primes. You may want to use the fact that the extension $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$ ramifies exactly at p with ramification index $\left[\mathbb{Q}\left(\zeta_{p}\right): \mathbb{Q}\right]=p-1$.
(b). Use (a) to show that F is contained in $\mathbb{Q}(\zeta)$.
(c). Show that any cyclotomic field that contains F must contain $\mathbb{Q}(\zeta)$.

Problem 4 (20 points)

Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$ of degree 5 with splitting field F. Suppose that p_{1}, p_{2}, p_{3} are primes that are unramified in F / \mathbb{Q}, and let f_{i} be the reduction of $f(x)$ modulo p_{i} for $i=1,2,3$. Suppose further that

- f_{1} is irreducible;
- f_{2} factors (into irreducibles) as $g_{1} g_{2}$, with $\operatorname{deg}\left(g_{1}\right)=2$ and $\operatorname{deg}\left(g_{2}\right)=3$;
- f_{3} factors (into irreducibles) as $g_{3} g_{4}$, with $\operatorname{deg}\left(g_{3}\right)=1$ and $\operatorname{deg}\left(g_{4}\right)=4$;

Show that $\operatorname{Gal}(F / \mathbb{Q})$ is either A_{5} or S_{5}.

