MATH 518 — Comp Exam — Jan 2021

Instructions:

- Five problems, 20 points each. Maximum 100 points. Duration: 3 hours.
- You are allowed to consult one book: Lee's *Introduction to smooth manifolds*. It's available through the library catalog: https://i-share-uiu.primo.exlibrisgroup.com/permalink/01CARLI_UIU/gpjosq/alma99785532212205899.
- If you use results from the book please quote them precisely (e.g., "by Lemma 11.1 ...").
- You **may not** ask or receive help from any human. You **may not** use search engines, Siri, Google, Alexa etc., various websites or books other than the one mentioned above.
- Justify all your answers. Please make sure your scan is readable.
 - 1. (20 points) Consider the smooth vector field on \mathbb{R}^3 given by

$$V = -y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z},$$

and let:

$$M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + yz = 1\}.$$

- (a) Show that M is a submanifold of \mathbb{R}^3 .
- (b) Show that that V is tangent to M, so the restriction $X = V|_M$ defines a vector field on M.
- (c) Find the flow of X.
- 2. (20 points) On \mathbb{R}^3 consider the vector field and the differential form given by:

$$V = xy \frac{\partial}{\partial z} - \frac{\partial}{\partial y}, \qquad \omega = z \, \mathrm{d}x \wedge \mathrm{d}y + \, \mathrm{d}y \wedge \mathrm{d}z.$$

Compute the following:

- (a) The contraction $i_V \omega$;
- (b) The exterior derivative $d\omega$;
- (c) The Lie derivative $L_V \omega$;
- (d) The pullback $\Phi^* \omega$ by the map $\Phi : \mathbb{R}^2 \to \mathbb{R}^3$, $\Phi(s,t) = (s+t,s,t)$.

3. (20 points) Consider the 2-form on $\mathbb{R}^3 \setminus \{0\}$

$$\alpha = \frac{x - y}{x^2 + y^2 + z^2} \, \mathrm{d}x \wedge \mathrm{d}y + \frac{y - z}{x^2 + y^2 + z^2} \, \mathrm{d}y \wedge \mathrm{d}z + \frac{z - x}{x^2 + y^2 + z^2} \, \mathrm{d}z \wedge \mathrm{d}x.$$

Compute the integral

$$\int_{\mathbb{S}^2} \alpha$$

with respect to the orientation of your choice. Here, of course, \mathbb{S}^2 denotes the unit sphere in \mathbb{R}^3 centered at 0.

4. (20 points) Let n > 1 and denote by \mathbb{S}^{n-1} be unit sphere in \mathbb{R}^n . Consider the function $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x_1, \dots, x_n) = x_1^3 + \dots + x_n^3$$

Prove that

$$M = \{ x \in \mathbb{S}^{n-1} \mid f(x) = 0 \}$$

is an embedded submanifold of \mathbb{S}^{n-1} . What is its dimension? Explain.

5. (20 points) Give an example of a nowhere vanishing vector field on ℝP⁵ – the 5-dimensional real projective space – or prove that any vector field on ℝP⁵ has to have a zero.