MATH 518 - Comp Exam - Jan 2021

Instructions:

- Five problems, 20 points each. Maximum 100 points. Duration: 3 hours.
- You are allowed to consult one book: Lee's Introduction to smooth manifolds. It's available through the library catalog: https://i-share-uiu.primo.exlibrisgroup.com/ permalink/01CARLI_UIU/gpjosq/alma99785532212205899.
- If you use results from the book please quote them precisely (e.g., " by Lemma 11.1 ...").
- You may not ask or receive help from any human. You may not use search engines, Siri, Google, Alexa etc., various websites or books other than the one mentioned above.
- Justify all your answers. Please make sure your scan is readable.

1. (20 points) Consider the smooth vector field on \mathbb{R}^{3} given by

$$
V=-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}
$$

and let:

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y z=1\right\} .
$$

(a) Show that M is a submanifold of \mathbb{R}^{3}.
(b) Show that that V is tangent to M, so the restriction $X=\left.V\right|_{M}$ defines a vector field on M.
(c) Find the flow of X.
2. (20 points) On \mathbb{R}^{3} consider the vector field and the differential form given by:

$$
V=x y \frac{\partial}{\partial z}-\frac{\partial}{\partial y}, \quad \omega=z \mathrm{~d} x \wedge \mathrm{~d} y+\mathrm{d} y \wedge \mathrm{~d} z
$$

Compute the following:
(a) The contraction $\imath_{V} \omega$;
(b) The exterior derivative $\mathrm{d} \omega$;
(c) The Lie derivative $L_{V} \omega$;
(d) The pullback $\Phi^{*} \omega$ by the map $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \Phi(s, t)=(s+t, s, t)$.
3. (20 points) Consider the 2-form on $\mathbb{R}^{3} \backslash\{0\}$

$$
\alpha=\frac{x-y}{x^{2}+y^{2}+z^{2}} \mathrm{~d} x \wedge \mathrm{~d} y+\frac{y-z}{x^{2}+y^{2}+z^{2}} \mathrm{~d} y \wedge \mathrm{~d} z+\frac{z-x}{x^{2}+y^{2}+z^{2}} \mathrm{~d} z \wedge \mathrm{~d} x .
$$

Compute the integral

$$
\int_{\mathbb{S}^{2}} \alpha
$$

with respect to the orientation of your choice. Here, of course, \mathbb{S}^{2} denotes the unit sphere in \mathbb{R}^{3} centered at 0 .
4. (20 points) Let $n>1$ and denote by \mathbb{S}^{n-1} be unit sphere in \mathbb{R}^{n}. Consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{3}+\cdots+x_{n}^{3} .
$$

Prove that

$$
M=\left\{x \in \mathbb{S}^{n-1} \mid f(x)=0\right\}
$$

is an embedded submanifold of \mathbb{S}^{n-1}. What is its dimension? Explain.
5. (20 points) Give an example of a nowhere vanishing vector field on $\mathbb{R P}^{5}$ - the 5 -dimensional real projective space - or prove that any vector field on $\mathbb{R} \mathbb{P}^{5}$ has to have a zero.

