Comprehensive Exam

Math 518, January 2020
(1) Consider \mathbb{R}^{3}, with coordinates x, y and z, and the following objects:

$$
\begin{aligned}
& X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}-2 \frac{\partial}{\partial z} \\
& Y=y \frac{\partial}{\partial x} \\
& \alpha=x d y-y d z \\
& F: \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& \quad(u, v) \mapsto\left(e^{u} \sin v, e^{u} \cos v, v-u\right)
\end{aligned}
$$

Compute

(a) $Y(\alpha(X))$
(b) $\mathcal{L}_{X} d \alpha$
(c) the time-t flow of X
(d) $F^{*}(d \alpha)$
(2) Prove that

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}-y^{2}+2 x z-2 y z=1,2 x-y+z=0\right\}
$$

is an embedded submanifold of \mathbb{R}^{3}.
(3) Prove that if M and N are both orientable manifolds then so is their product, $M \times N$.
(4) Consider the 2-sphere $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ and the 2-form

$$
\omega=x d y \wedge d z-2 y d z \wedge d x+3 z d x \wedge d y
$$

Prove that the restriction of ω to S^{2} represents a nontrivial class in $\mathrm{H}_{\mathrm{de}}^{2}$ Rham $\left(S^{2}\right)$, the second de Rham cohomology group of S^{2}.

