MATH 500 - January 2020

Five problems, 20 points each. Maximum 100 points.

Justify all your answers!

1. Let G be a finite group of order 100 .
(a) Show that G is solvable. (Feel free to use that groups of order p^{2} are abelian for p a prime number)
(b) Show, by giving a counterexample, that G need not be nilpotent.
2. Decide which of the following sets are ideals of the ring $\mathbb{Z}[x]$. Provide justification.
(a) The set of all polynomials whose coefficient of x^{2} is a multiple of 3 .
(b) $\mathbb{Z}\left[x^{2}\right]$, the set of all polynomials in which only even powers of x appear.
(c) The set of polynomials whose coefficients sum to zero.
3. Find the possible Jordan canonical forms of 7×7 matrices M with entries in \mathbb{C} satisfying the following criteria:

- the characteristic polynomial of M is $(z-3)^{4}(z-5)^{3}$,
- the minimal polynomial of M is $(z-3)^{2}(z-5)^{2}$, and
- the \mathbb{C}-vector space dimension of the nullspace of $3 \cdot \mathrm{Id}-M$ is 2 .

4. Determine if the following polynomials are irreducible over \mathbb{Z}.
(a) $x^{3}-5 x-1$.
(b) $x^{4}+10 x^{2}+5$.
5. (a) Describe the subgroups of S_{4} that can occur as Galois group of an irreducible quartic polynomial.
(b) Determine the Galois group of the irreducible polynomial $x^{4}+2 x^{2}+4$. (Feel free to use that a quartic polynomial $f(x)=x^{4}+q x^{2}+r x+s$ has resolvent cubic $g(x)=x^{3}-2 q x^{2}+\left(q^{2}-4 s\right) x+r^{2}$.)
