MATH 500 — January 2020 Five problems, 20 points each. Maximum 100 points. Justify all your answers!

- 1. Let G be a finite group of order 100.
 - (a) Show that G is solvable. (Feel free to use that groups of order p^2 are abelian for p a prime number)
 - (b) Show, by giving a counterexample, that G need not be nilpotent.
- 2. Decide which of the following sets are ideals of the ring $\mathbb{Z}[x]$. Provide justification.
 - (a) The set of all polynomials whose coefficient of x^2 is a multiple of 3.
 - (b) $\mathbb{Z}[x^2]$, the set of all polynomials in which only even powers of x appear.
 - (c) The set of polynomials whose coefficients sum to zero.
- 3. Find the possible Jordan canonical forms of 7×7 matrices M with entries in \mathbb{C} satisfying the following criteria:
 - the characteristic polynomial of M is $(z-3)^4(z-5)^3$,
 - the minimal polynomial of M is $(z-3)^2(z-5)^2$, and
 - the \mathbb{C} -vector space dimension of the nullspace of $3 \cdot \mathrm{Id} M$ is 2.
- 4. Determine if the following polynomials are irreducible over \mathbb{Z} .
 - (a) $x^3 5x 1$.
 - (b) $x^4 + 10x^2 + 5$.
- 5. (a) Describe the subgroups of S_4 that can occur as Galois group of an irreducible quartic polynomial.
 - (b) Determine the Galois group of the irreducible polynomial $x^4 + 2x^2 + 4$. (Feel free to use that a quartic polynomial $f(x) = x^4 + qx^2 + rx + s$ has resolvent cubic $g(x) = x^3 - 2qx^2 + (q^2 - 4s)x + r^2$.)