Math 511 Comp Exam, May 2018

Justify your answers to all problems. All varieties are defined over an algebraically closed field k of characteristic zero.

Problem 1. Let $\Phi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^1$ be the rational map defined by $\Phi(u : v : w) = (u : v)$.

- (1) Show that Φ cannot be extended to a regular map $\mathbb{P}^2 \to \mathbb{P}^1$.
- (2) Let C denote the curve

$$C = \{(u:v:w) \mid wv^2 = u^3\} \subset \mathbb{P}^2.$$

The restriction of Φ to C defines a rational map $\Psi = \Phi|_C : C \dashrightarrow \mathbb{P}^1$. Does Ψ extend to a regular map $C \to \mathbb{P}^1$?

Problem 2. Prove that for any $n \ge 2$, and any $x \in \mathbb{P}^n$, the open subvariety $\mathbb{P}^n \smallsetminus \{x\}$ of \mathbb{P}^n is not isomorphic to any affine variety, nor is it isomorphic to any projective variety.

Problem 3. Prove that every nonsingular conic curve $X \subset \mathbb{P}^2$ is isomorphic to \mathbb{P}^1 .

Problem 4. For any finite group Γ acting by automorphisms $m_{\gamma} : \mathbb{A}^n \xrightarrow{\cong} \mathbb{A}^n$ (for $\gamma \in \Gamma$) of \mathbb{A}^n , we define the quotient variety \mathbb{A}^n/Γ to be the affine variety whose coordinate ring is the ring $k[\mathbb{A}^n]^{\Gamma}$ of invariant functions, which is defined by

 $k[\mathbb{A}^n]^{\Gamma} = \{ f \in k[\mathbb{A}^n] \mid f(m_{\gamma}(x)) = f(x) \text{ for all } x \in \mathbb{A}^n \text{ and } \gamma \in \Gamma \}.$

Let the group $\{\pm 1\}$ (with group operation defined by multiplication) act on \mathbb{A}^2 by $m_{\gamma}(x, y) = (\gamma x, \gamma y)$ for $\gamma = \pm 1$.

- (1) Show that $\mathbb{A}^2/\{\pm 1\}$ is isomorphic to the affine surface $Z(UW V^2) \subset \mathbb{A}^3$.
- (2) Is the quotient variety $\mathbb{A}^2/\{\pm 1\}$ nonsingular? [You may answer this even if you have not solved part (1).]

Problem 5. Consider the curve C in \mathbb{A}^2 given by $y^2 = x^3 - x^2$

- (1) Show that the "blow up" of \mathbb{A}^2 at (0,0) is the union $\operatorname{Spec}(k[x,y/x]) \bigcup \operatorname{Spec}(k[y,x/y]) = \mathcal{B}l_{(0,0)}(\mathbb{A}^2)$. Show that there is a birational map from this Blowup to the plane.
- (2) Prove that the curve is singular and that its inverse image in the blowup is smooth.
- (3) Prove that the inverse image of the curve in the blowup of the plane is its normalization.