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Abstract. In 1968, Ringel and Youngs confirmed the last open case of
the Heawood Conjecture by determining the genus of every complete graph
Kn. In this paper, we investigate the minimum genus embeddings of the
complete 3-uniform hypergraphs K3

n. Embeddings of a hypergraph H are
defined as the embeddings of its associated Levi graph LH with vertex set
V (H) t E(H), in which v ∈ V (H) and e ∈ E(H) are adjacent if and only
if v and e are incident in H. We determine both the orientable and the
non-orientable genus of K3

n when n is even. Moreover, it is shown that the
number of non-isomorphic minimum genus embeddings of K3

n is at least

2
1
4n

2 logn(1−o(1)). The construction in the proof may be of independent
interest as a design-type problem.

1. Introduction

For a simple graph G, let g(G) be the genus (sometimes we also use the
term orientable genus) of G, that is, the minimum h such that G embeds into
the orientable surface Sh of genus h, and let g̃(G) be the non-orientable genus
of G which is the minimum c such that G embeds into the non-orientable
surface Nc with crosscap number c. (When G is planar, we define g̃(G) = 0).
If orientability of a surface is not a concern, we may consider the Euler genus
of G, which is defined as ĝ(G) = min{2g(G), g̃(G)}.

By a surface we mean a compact two-dimensional manifold without bound-
ary. We say G is 2-cell embedded in a surface if each face of G is homeomorphic
to an open disk. Youngs [18] showed that the problem of determining the ori-
entable genus of a connected graph G is the same as determining a 2-cell
embedding of G with minimum genus. The same holds for the non-orientable
genus [11]. It was proved by Thomassen [15] that the genus problem is NP-
complete. For further background on topological graph theory, we refer to
[10].

One of the basic questions in topological graph theory is to determine the
genus of a graph. This task can be complicated even for small graphs and
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for families of graphs with simple structure. The genus problem for com-
plete graphs became of central importance in connection with the four-colour
problem and its generalization to other surfaces. Heawood [5] generalized the
four-colour conjecture to higher genus surfaces in 1890 and proposed what
became known as the Heawood Map-coloring Conjecture. The problem was
open for almost eight decades, and in 1965 this problem was given the place
of honor among Tietze’s Famous Problems of Mathematics [16]. The problem
was eventually reduced to the genus computation for complete graphs and was
studied in a series of papers. In 1968, Ringel and Youngs [14] announced the
final solution of Heawood’s Conjecture. The complete proof was presented
in the monograph [13]. Their proof is split in 12 cases, some of which were
slightly simplified later, but for the most complicated cases, no short proofs
are known as of today.

Theorem 1.1 (Ringel and Youngs [13]). If n ≥ 3 then

g(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
.

If n ≥ 5 and n 6= 7, then

g̃(Kn) =

⌈
(n− 3)(n− 4)

6

⌉
.

A natural generalization of genus problems for graphs is the genus of hy-
pergraphs [8, 17]. The embeddings of a hypergraph H are defined as the em-
beddings of its associated Levi graph. The genus problems of hypergraphs are
tightly related with the genus of bipartite graphs, 2-complexes, block designs
and finite geometry. We refer to [1, 12, 17] for more background.

In this paper, we determine the genus and the non-orientable genus of com-
plete 3-uniform hypergraphs K3

n when n is even.
Our main result is the following.

Theorem 1.2. If n ≥ 4 is even, then

g(K3
n) =

(n− 2)(n+ 3)(n− 4)

24
.

If n ≥ 6 is even, then

g̃(K3
n) =

(n− 2)(n+ 3)(n− 4)

12
.

In our proofs, we construct a set of Eulerian circuits satisfying certain com-
patibility conditions. The construction may be independent interest as a design
type problem.
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If n is odd, the genus of K3
n is strictly greater than

⌈
1
24

(n−2)(n+3)(n−4)
⌉
.

Surprisingly, it is actually much larger than that. These cases will be dealt
with in a separate paper [7].

The construction used to prove Theorem 1.2 has lots of flexibility and it can
be generalized to give many non-isomorphic minimum genus embeddings.

Theorem 1.3. If n is even, there exist at least 2
1
4
n2 logn(1−o(1)) non-isomorphic

(orientable and non-orientable, respectively) minimum genus embeddings of
K3

n, where the logarithm is taken base 2.

Inspired by [6, Theorem 1.5], we also study the genus of hypergraphs with
multiple edges. In that result a phase transition occurs when studying the
genus of random bipartite graphs with parts of size n1 and n2, where n2 is

constant, n1 � 1, and edge probability is p = Θ(n
−1/3
1 ). The following hyper-

graph appears in the analysis related to that case. Let mK3
n be the 3-uniform

hypergraph such that each triple of vertices is contained in exactly m edges.
We have the following result.

Theorem 1.4. Let m be a positive integer and let n ≥ 4 be even. Then

g(mK3
n) =

(n− 2)(mn(n− 1)− 12)

24
and

g̃(mK3
n) =

(n− 2)(mn(n− 1)− 12)

12
.

The paper is organized as follows. In the next section, we give basic defini-
tions and results in topological graph theory. In addition, we present the main
tools used in the proof of the main theorem. In Section 3, we prove Theorem
1.2. In Section 4, we show that the number of non-isomorphic minimum genus
embeddings constructed in the proof of Theorem 1.2 is abundant. Section 5
resolves the genus of hypergraphs with multiple edges and contains the proof
of Theorem 1.4.

2. Embeddings of complete 3-uniform hypergraphs

We will use standard graph theory definitions and notation as used by Dies-
tel [3]. As previously mentioned, an embedding of a graph G on a surface is a
drawing of G on that surface without edge-crossings. Every 2-cell embedding
(and thus also any minimum genus embedding) of G can be represented com-
binatorially by using the corresponding rotation system π = {πv | v ∈ V (G)}
where a local rotation πv at the vertex v is a cyclic permutation of the neigh-
bours of v. In addition to this, we also add the signature, which is a mapping
λ : E(G) → {1,−1} and describes if the local rotations around the endver-
tices of an edge have been chosen consistently or not. The signature is needed
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only in the case of non-orientable surfaces; in the orientable case, we may al-
ways assume the signature is trivial (all edges have positive signature). The
pair (π, λ) is called the embedding scheme for G. For more background on
topological graph theory, we refer to [4, 10].

We say that two embeddings φ1, φ2 : G → S of a graph G into the same
surface S are equivalent (or homeomorphic) if there exists a homeomorphism
h : S → S such that φ2 = hφ1. By [10, Corollary 3.3.2], (2-cell) embeddings
are determined up to equivalence by their embedding scheme (π, λ), and two
such embedding schemes (π, λ) and (π′, λ′) determine equivalent embeddings if
and only if they are switching equivalent. This means that there is a vertex-set
U ⊆ V (G) such that (π′, λ′) is obtained from (π, λ) by replacing πu with π−1u

for each u ∈ U and by replacing λ(e) with −λ(e) for each edge e with one end
in U and the other end in V (G) \ U .

Let H be a hypergraph. The associated Levi graph of H is the bipartite
graph LH defined on the vertex set V (H)∪E(H), in which v ∈ V (H) and e ∈
E(H) are adjacent if and only if v and e are incident in H; see [2] or [17]. In this
paper, we use K3

n to denote the complete 3-uniform hypergraph of order n, and
we denote its Levi graph by Ln. The vertices of Ln corresponding to V (K3

n) =
[n] will be denoted by Xn and the vertex-set of cardinality

(
n
3

)
corresponding

to the edges of K3
n will be denoted by Yn. Following [17, Chapter 13], we define

embeddings of a hypergraph H in surfaces as the 2-cell embeddings of its Levi
graph LH . We define the genus g(H) (the non-orientable genus g̃(H), and
the Euler genus ĝ(H)) as the genus (non-orientable genus, and Euler genus,
respectively) of LH .

It is easy to see that each embedding of a hypergraph H can be represented
by choosing a point in a surface for each vertex of H and a closed disk De for
each edge e ∈ E(H) such that for any two edges e, f , the intersection of the
corresponding disks De ∩ Df is precisely the set of points in e ∩ f . We refer
to [17] for more details and to Figure 1 for an example.

1

2

3

4

1

2

3

4
123

124

134

234

Figure 1. Planar embeddings of K3
4 and its Levi graph L4.

Since LH is bipartite, we have the following simple corollary of Euler’s For-
mula (see [10, Proposition 4.4.4]).
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Lemma 2.1. Let H be a 3-uniform hypergraph with n vertices and e edges.
Then

(1) ĝ(H) ≥ 1
2
e− n+ 2.

Moreover, equality holds in (1) if and only if the Levi graph LH admits a
quadrilateral embedding in some surface.

In the case of the complete 3-uniform hypergraphs we obtain:

Proposition 2.2. For every n ≥ 4 we have ĝ(K3
n) ≥

⌈
(n−2)(n+3)(n−4)

12

⌉
.

From now on, we assume n ≥ 4 is an even integer. For each i (1 ≤ i ≤ n),
let Kn − i be the labelled complete graph defined on the vertex set [n] \ {i}.
Suppose Ti and T ′i are Eulerian circuits in Kn − i. If T ′i is the reverse of Ti,
we denote it by T−1i and view them to be equivalent. Two families F ,F ′ of
circuits are equivalent if there is a bijection f : F → F ′ such that for each
C ∈ F either f(C) = C or f(C) = C−1.

Suppose Ti is an Eulerian circuit in Kn − i and Tj in Kn − j, where j 6=
i. Define a transition through j in Ti as a subtrail of Ti consisting of two
consecutive edges aj and jb, and we denote it simply by ajb (which may
sometimes be written as a, j, b). We say that Ti and Tj are compatible if for
every transition ajb in Ti, there is a transition aib or bia in Tj, and Ti and Tj are
strongly compatible if for every transition ajb in Ti, there is the transition bia
in Tj. Note that this gives a bijective correspondence between n−2

2
transitions

through j in Ti and n−2
2

transitions through i in Tj. We call a set of trails
{T1, . . . , Tn} an embedding set if Ti is an Eulerian circuit in Kn − i for each
i = 1, . . . , n and any two of them are compatible. An embedding set is strong
if for every i 6= j, Ti and Tj are strongly compatible. In our construction of
embeddings, we will use different rules when specifying Eulerian circuits for
odd and even values of i, and we will say that i ∈ [n] is an odd vertex (or even
vertex) when i is odd (or even) viewed as an integer.

The following result is our main tool in this paper.

Theorem 2.3. Let n ≥ 4 be an even integer. There exists a bijection between
equivalence classes of the (labelled) quadrilateral embeddings of the Levi graph
Ln of K3

n and the equivalence classes of embedding sets of size n. Under this
correspondence, strong embedding sets correspond to orientable quadrilateral
embeddings.

Proof. Suppose Π = {πv | v ∈ V (Ln)} is a quadrilateral embedding of Ln.

Recall that Xn = [n] and Yn =
(
[n]
3

)
is the bipartition of Ln. For every vertex

i ∈ Xn, consider the local rotation πi around i. Note that the neighbors of i
are all

(
n−1
2

)
=: N triples of elements of [n] which contain i, and all of them

have degree 3 in Ln.
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Each pair of consecutive vertices (triples) in πi determines a 4-face with two
vertices in Xn, say i and j. Then both triples are adjacent to i and to j in Ln,
so they both contain i and j. Let us now consider the two 4-faces containing
the edge joining i and a triple ijk. Since this triple is adjacent to vertices
j and k in Ln, one of the neighbors of i preceding or succeeding ijk in the
local rotation πi contains j and the other one contains k. Therefore there is a
sequence a1, a2, . . . , aN such that aj is the common element between the jth
and (j + 1)st neighbor of i in πi. Moreover, the jth neighbor of i is the triple
iaj−1aj (where a0 = aN). Clearly, the cyclic sequence Ti = (a1a2 . . . aN) is an
Eulerian circuit in Kn − i since the consecutive pairs aj−1aj (1 ≤ j ≤ N) run
over all pairs in [n] \ {i}.

a

iaj

j

i k

ijk

c

b

ikb

jkc
Ti : . . . ajkb . . .

Tj : . . . ckia . . .

Tk : . . . b ijc . . .

Figure 2. A quadrilateral embedding around a vertex ijk ∈
Yn. The chosen clockwise rotation around vertices i, j, k is indi-
cated by the dashed circular arcs.

Suppose iaj and ijk are consecutive neighbors of the vertex i in πi and
assume iaj → ijk is clockwise. See Figure 2 for clarification. That means,
ajk is a transition in Ti. Now consider the local rotation πj. Clearly, iaj
and ijk are consecutive vertices in πj. Moreover, assuming the local rotations
around i and j are chosen consistently with the clockwise orientation in the
face containing i, iaj, j, ijk, we have ijk → iaj is clockwise. That means
that Ti and Tj are compatible (strongly in the orientable case). Therefore,
{T1, . . . , Tn} form an embedding set (or strong embedding set).

This gives a correspondence (π, λ) 7→ {T1, . . . , Tn}. Let us first observe
that equivalent embedding schemes (obtained by switching over a vertex-set
U ⊆ V (Ln)) correspond to changing the Eulerian circuits Tu with their inverse
circuits T−1u for u ∈ U ∩Xn. Thus the correspondence preserves equivalence.
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To see that the described correspondence is injective, consider two quadri-
lateral embeddings with schemes Π1 = (π1, λ1) and Π2 = (π2, λ2), whose
embedding set {T1, . . . , Tn} is the same. This in particular means that π1 and
π2 agree on Xn. Clearly, this implies that the set of quadrangular faces is the
same for both embeddings (for every π1

i -consecutive neighbors iaj → ijk the
corresponding 4-face has vertices i, iaj, j, ijk). By [10, Corollary 3.3.2], this
implies that Π1 and Π2 are equivalent.

In order to show the map is surjective, suppose E = {T1, . . . , Tn} is an
embedding set. We have to show that there is a quadrilateral embedding of
K3

n such that this embedding returns an equivalent embedding set under the
correspondence described in the first part of the proof. The quadrilateral em-
bedding will be given by an embedding scheme Π = (π, λ) which is determined
as follows.

For i ∈ Xn, let Ti be the circuit a0a1a2 . . . aN , where a0 = aN . Then we
define the rotation πi around the vertex i as the cyclic permutation:

πi = (ia0a1, ia1a2, ia2a3, . . . , iaN−1aN).

For each triple ijk ∈ Yn (where i < j < k), set πijk = (i, j, k). Finally, define
the signature as follows. Given i < j < k, let e1, e2, and e3 be the edges
joining ijk with the vertex i, j, and k, respectively. We set λ(e1) = 1 if the
edge jk appears in the direction from j to k in Ti. Otherwise, set λ(e1) = −1.
Similarly, set λ(e2) = 1 (λ(e3) = 1) if and only if the edge ki (ij) appears
in Tj (Tk) in the direction from k to i (from i to j). By these rules it is
clear that equivalent embedding sets give equivalent embedding schemes, and
that Π will give back the same embedding set. It remains to see that the
embedding Π is quadrilateral. To see this, consider a triple ijk (i < j < k)
and the faces around it. Figure 2 should help us to visualize the situation.
By changing the embedding set E to an equivalent embedding set (by possibly
changing Ti, Tj, Tk to their inverses), we may assume that Ti traverses jk in
the direction from j to k, Tj traverses ki from k to i, and Tk traverses ij
from i towards j. Then λ(e1) = λ(e2) = λ(e3) = 1. Let Ti : . . . ajkb . . . and
Tj : . . . ckia . . . . Here we used compatibility condition to conclude that kia is
a transition in Tj. Compatibility condition implies that Tk : . . . bijc . . . . This
implies that the faces around ijk are precisely as shown in the figure. Since
ijk was arbitrary, we conclude that all faces are quadrilaterals, which we were
to prove. �

Example 2.4. g(K3
6) = 3.

Figure 3 shows an embedding of K3
6 in the orientable surface of genus 3. By

identifying the edges on the boundary of the square with the same label a−h,
we obtain an embedding on the triple torus. Its strong embedding set E6 is
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4

2
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3

456456

3

5

4

6

1

a

a

b

b

c

c

d d

e

e

f

f

g

g

h

hi

i

j

j

Figure 3. An orientable embedding of K3
6 in the triple torus:

By putting the vertex {i, j, k} inside each triangular face ijk
shown in the figure and adding the edges from the vertex to i, j
and k, we obtain an embedding of the Levi graph L6 with all
faces of length 4.

the following:

T1 : 3, 4, 2, 5, 3, 6, 4, 5, 6, 2;

T2 : 4, 3, 1, 6, 3, 5, 4, 6, 5, 1;

T3 : 1, 2, 4, 6, 1, 5, 2, 6, 5, 4;

T4 : 2, 1, 3, 5, 1, 6, 2, 5, 6, 3;

T5 : 6, 1, 4, 3, 6, 4, 2, 3, 1, 2;

T6 : 5, 2, 4, 1, 3, 4, 5, 3, 2, 1.

3. Complete 3-uniform hypergraphs of even order

In this section, we will construct minimum genus embeddings of K3
n for every

even n ≥ 4.

Theorem 3.1. If n ≥ 4 is even, then

g(K3
n) =

(n− 2)(n+ 3)(n− 4)

24
.

Proof. By Lemma 2.1 and Proposition 2.2 it suffices to show that for even
n ≥ 4, the graph Ln has an orientable quadrangular embedding. We will
prove it by induction on n. The base case when n = 4 is clear from Figure 1,
so we proceed with the induction step.
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Assume Ln quadrangulates some orientable surface, and En = {T1, . . . , Tn}
is the corresponding strong embedding set, where Ti is an Eulerian circuit in
Kn−i (i ∈ [n]). Now we consider Ln+2 with two new vertices in Xn+2 = [n+2].
For brevity we will write x = n + 1 and y = n + 2. For every odd vertex
1 ≤ i ≤ n−1, Ti contains n−2

2
transitions of the form a, i+ 1, b. We arbitrarily

pick one of those transitions, and denote it by ai, i+ 1, bi. In the next step, we
are going to insert a trail Ei (defined below) between i+ 1 and bi in Ti to get
an Eulerian circuit in Kn+2− i. The new, longer circuit will be denoted by T ′i .
For the trail Ti+1 in En, since ai, i + 1, bi is a transition in Ti, the transition
bi, i, ai is contained in Ti+1 by the strong compatibility condition. Similarly as
what we do for Ti, we insert a trail Ei+1 between i and ai in Ti+1, and the new
longer circuit we get is denoted by T ′i+1.

For every odd vertex 1 ≤ i ≤ n − 1, let σi be the permutation of the set
[n] \ {i, i+ 1} that is obtained from the sequence 1, 2, . . . , n by removing i and
i+ 1 and by switching the pairs 2j − 1, 2j for j = 1, . . . , i−1

2
. Specifically:

σ1 = 3, 4, 5, 6, . . . , n− 1, n;

σ3 = 2, 1, 5, 6, . . . , n− 1, n;

· · ·
σi = 2, 1, 4, 3, . . . , i− 1, i− 2, i+ 2, i+ 3, i+ 4, . . . , n− 1, n;

· · ·
σn−1 = 2, 1, 4, 3, . . . , n− 2, n− 3.

We construct Ei as follows. We start with x, and then insert y and x
consecutively in the interspace of numbers in σi, and add x, y, i+ 1 at the end,
for every odd vertex 1 ≤ i ≤ n− 1. For the case Ei+1, we start with y, insert
x and y (alternating) in the interspace of numbers in σi, and add y, x, i at the
end. To be more precise, we get the following:

E1 = x, 3, y, 4, x, 5, y, 6, . . . , x, n− 1, y, n, x, y, 2;

E2 = y, 3, x, 4, y, 5, x, 6, . . . , y, n− 1, x, n, y, x, 1;

· · ·
Ei = x, 2, y, 1, . . . , x, i− 1, y, i− 2, x, i+ 2, y, . . . , x, n− 1, y, n, x, y, i+ 1;

Ei+1 = y, 2, x, 1, . . . , y, i− 1, x, i− 2, y, i+ 2, x, . . . , y, n− 1, x, n, y, x, i;

· · ·
En−1 = x, 2, y, 1, x, 4, y, 3, . . . , x, n− 2, y, n− 3, x, y, n;

En = y, 2, x, 1, y, 4, x, 3, . . . , y, n− 2, x, n− 3, y, x, n− 1.

It is easy to see that T ′i and T ′i+1 are Eulerian circuits in Kn+2 − i and
Kn+2 − (i + 1). To verify the strong compatibility of these Eulerian circuits,
note that our construction preserves almost all transitions in En, except for
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every odd i we break the transition ai, i+1, bi in Ti, and the transition bi, i, ai in
Ti+1. That means we only need to check the strong compatibility of transitions
in Ei. If j and i are both odd and j < i, this is true since x, i, y is a transition
in Ej and y, j, x is a transition in Ei. Similar observations hold in the other
three cases depending on the parities of j and i. This shows that T ′a and T ′b
are strongly compatible for every 1 ≤ a < b ≤ n.

In the final step, we will define Eulerian circuits T ′x and T ′y, such that En+2 =
{T ′1, . . . , T ′n, T ′x, T ′y} is a strong embedding set. We have to fix some transitions
in T ′x and T ′y in order to get strong compatibility with circuits T ′j (1 ≤ j ≤ n).
We list these transitions in the following tables, where we assume 3 ≤ i ≤ n−3
is an odd vertex.

Transitions in T ′x through odd vertices (3 ≤ i ≤ n− 3)
3 1 2 2 i i+ 1 2 n− 1 n
5 1 4 4 i 1 4 n− 1 1
7 1 6 6 i 3 6 n− 1 3

9 1 8 . . .
... . . .

i− 1 i i− 4
... i+ 2 i i− 2

...
i+ 4 i i+ 3

... n− 4 n− 1 n− 7
n− 1 1 n− 2 n− 1 i n− 2 n− 2 n− 1 n− 5

y 1 n y i n y n− 1 n− 3

Transitions in T ′x through even vertices (4 ≤ i+ 1 ≤ n− 2)
4 2 3 1 i+ 1 2 1 n 2
6 2 5 3 i+ 1 4 3 n 4

8 2 7
...

i− 2 i+ 1 i− 1
... . . . i+ 3 i+ 1 i+ 2 . . .

...
...

n 2 n− 1 n i+ 1 n− 1 n− 3 n n− 2
1 2 y i i+ 1 y n− 1 n y

If T ′x has all the transitions listed in the tables above, then it is strongly
compatible with T ′j for every 1 ≤ j ≤ n. Since each pair of two different
numbers will consecutively appear in T ′x exactly once, the above tables give us
the following n/2 subtrails {A1, . . . , An

2
} in T ′x where we also let 3 ≤ i ≤ n− 3
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be odd.

A1 = y, 1, n, 2, n− 1, n, y;

· · ·
A i+1

2
= y, i, n, i+ 1, Fi(1), Fi(2), . . . , Fi(

i−1
2

), n− i, n+ 1− i, y;

· · ·
An

2
= y, Fn−1(1), Fn−1(2), . . . , Fn−1(

n
2
), 2, y.

where Fi(j) (3 ≤ i ≤ n − 3) is a subtrail of length 4 such that Fi(j) =
n+ 1− 2j, i− 2j, n− 2j, i+ 1− 2j and Fn−1(j) = n+ 1− 2j.

Similarly, the following tables list all transitions in T ′y forced by strong com-
patibility with T ′j for every 1 ≤ j ≤ n.

Transitions in T ′y through odd vertices (3 ≤ i ≤ n− 3)
4 1 3 1 i 2 1 n− 1 2
6 1 5 3 i 4 3 n− 1 4

8 1 7
...

i− 2 i i− 1
... . . . i+ 3 i i+ 2 . . .

...
...

n 1 n− 1 n i n− 1 n− 3 n− 1 n− 2
2 1 x i+ 1 i x n n− 1 x

Transitions in T ′y through even vertices (4 ≤ i+ 1 ≤ n− 2)
3 2 1 2 i+ 1 i 2 n n− 1
5 2 4 4 i+ 1 1 4 n 1
7 2 6 6 i+ 1 3 6 n 3

9 2 8 . . .
... . . .

i− 1 i+ 1 i− 4
... i+ 2 i+ 1 i− 2

...
i+ 4 i+ 1 i+ 3

... n− 4 n− 2 n− 7
n− 1 2 n− 2 n− 1 i+ 1 n− 2 n− 2 n n− 5

x 2 n x i+ 1 n x n n− 3
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The above tables also give us the following n/2 subtrails {B1, . . . , Bn
2
} in

T ′y.

B1 = x, 2, n, n− 1, x;

· · ·
B i+1

2
= x, i+ 1, n,Gi(1), Gi(2), . . . , Gi(

i−1
2

), n− i, x (i is odd, 3 ≤ i ≤ n− 3);

· · ·
Bn

2
= x, n, n− 3, Gn−1(1), Gn−1(2), . . . , Gn−1(

n−4
2

), 3, 2, 1, x.

where Gi(j) (3 ≤ i ≤ n − 3) is a subtrail of length 4 such that Gi(j) =
i− 2j, n+ 1− 2j, i+ 1− 2j, n− 2j, and Gn−1(j) is a subtrail of length 3 where
Gn−1(j) = n+ 1− 2j, n− 2j, n− 2j − 3.

Finally we are going to combine those subtrails of T ′x and T ′y. Note that
any combination will give us an Eulerian circuit on Kn+2 − x or Kn+2 − y
(respectively), since if ab (or ba) appears twice in the subtrails of T ′x, then
either T ′a or T ′b is not an Eulerian circuit. We let T ′x = A1, A2, . . . , An

2
and

T ′y = B1, B2, . . . , Bn
2
, that means the construction is the following:

T ′x = y, 1, . . . , n, y, 3, . . . , n− 2, y, 5, . . . , 4, y, n− 1, . . . , 2;

T ′y = x, 2, . . . , n− 1, x, 4, . . . , 5, x, n− 2, . . . , 3, x, n, . . . , 1.

It remains to show that T ′x and T ′y are strongly compatible. This is true
because for every odd vertex 3 ≤ i ≤ n − 1, we can see that n + 3 − i, y, i is
a transition in T ′x and i, x, n+ 3− i is a transition in T ′y, as well as 2, y, 1 is a
transition in T ′x and 1, x, 2 is a transition in T ′y. This completes the proof. �

Lemma 3.2. The non-orientable genus of K3
6 is 6.

Proof. By Lemma 2.1, we have g̃(K3
6) ≥ 6. Then it suffices to provide a

construction of an embedding of K3
6 in some non-orientable surfaces of genus

6. By Theorem 2.3, we only need to provide an embedding set which is not
strong. The description of such an embedding set E6 is given below:

T1 : 4, 2, 5, 3, 6, 4, 5, 6, 2, 3;

T2 : 4, 6, 5, 1, 4, 3, 1, 6, 3, 5;

T3 : 1, 2, 4, 6, 1, 5, 2, 6, 5, 4;

T4 : 5, 1, 6, 2, 5, 6, 3, 2, 1, 3;

T5 : 6, 3, 4, 2, 3, 1, 2, 6, 4, 1;

T6 : 2, 1, 5, 3, 2, 5, 4, 3, 1, 4.

Note that 6, 3, 4 is a transition in T5 and 6, 5, 4 is a transition in T3, and
also 2, 3, 1 is a transition in T5 and 1, 5, 2 is a transition in T3. That means,
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neither T3 nor T−13 is strongly compatible with T5. It is not hard to see that
all pairs in the set E6 are compatible. �

Theorem 3.3. If n ≥ 6 is even, then

g̃(K3
n) =

(n− 2)(n+ 3)(n− 4)

12
.

Proof. The proof follows the same inductive construction we used in the proof
of Theorem 3.1. Instead of using K3

4 as the base step, we use Lemma 3.2 as
the base. Therefore, by the way we constructed the embedding set of K3

n,
Eulerian circuits T3 and T5 will always be compatible, but they will never be
strongly compatible. �

4. Number of non-isomorphic embeddings

We say that two embeddings φ1, φ2 : G → S are isomorphic if there is an
automorphism α of G such that the embeddings φ1 and φ2α are equivalent. In
this section we will show how to obtain many non-isomorphic minimum genus
embeddings of K3

n when n is even.
The number of non-equivalent (2-cell) embeddings of K3

n in some surface is
equal to

(2) 2(n
3)
(((

n− 1

2

)
− 1

)
!

)n

22(n
2)−n+1 = 2(1−o(1))n3 logn.

This follows from the fact that non-equivalent 2-cell embeddings correspond
to different rotation systems. Each vertex in Xn has degree

(
n−1
2

)
and thus

has
((

n−1
2

)
− 1
)
! possible rotations, and each vertex in Yn has degree 3 and

thus 2 possible rotations. The last factor in (2) corresponds to the number
of inequivalent signatures (on each edge outside a fixed spanning tree we can
select the signature freely).

The genera of all these embeddings take only O(n3) different values, but the
majority of them will have their genus much larger than the minimum possible
genus. The number of minimum genus embeddings is indeed much smaller as
made explicit in the following.

Lemma 4.1. The number of non-equivalent embeddings of K3
n into a surface

of Euler genus 1
6
(n − 2)(n + 3)(n − 4) is at most 2( 1

4
+o(1))n3 logn, where the

logarithm is taken base 2.

Proof. Note that an embedding of K3
n into a surface of genus 1

6
(n − 2)(n +

3)(n − 4) is a quadrangular embedding of Ln. When n is odd, Kn−1 does
not have an Eulerian trail, which implies Ln does not have quadrangular em-
beddings. Thus we may assume that n is even since otherwise there are no
such embeddings. By Theorem 2.3, minimum genus embeddings of K3

n into
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surfaces of Euler genus 1
6
(n − 2)(n + 3)(n − 4) are quadrilateral and are in

a bijective correspondence with embedding sets. These are sets of Eulerian
circuits satisfying compatibility conditions. Their number can be estimated as
follows.

Suppose that compatible Eulerian circuits T1, . . . , Tk−1 are already chosen
(1 ≤ k ≤ n). To construct the next circuit Tk, we start by an arbitrary edge
in Kn − k. If we come to a vertex i < k when following the last chosen edge,
the transition is determined by compatibility with Ti. On the other hand if we
come to a vertex i > k for the rth time, there are (at most) n− 1− 2r edges
which can be chosen as the next edge on the trail. All together, when passing
through such a vertex i, we have at most (n−3)(n−5)(n−7) · · · 3·1 = (n−3)!!
choices. Therefore the number of ways to choose Tk is at most ((n− 3)!!)n−k.
Thus the number of embedding sets is at most:

((n− 3)!!)(n−1)+(n−2)+···+1+0 = 2( 1
4
+o(1))n3 logn

and this completes the proof. �

Note that in the proof we are actually giving a bound on compatible closed
trail decompositions. Nevertheless, this estimate may be rather tight, since
the number of Eulerian circuits in Kn−1 is 2( 1

2
+o(1))n2 logn, see [9, Theorem 4].

Now we will turn to a lower bound on the number of non-isomorphic min-
imum genus embeddings that can be obtained by a simple generalization of
the construction in our proofs of Theorems 3.1 and 3.3.

Theorem 4.2. If n is even, there exist at least 2( 1
4
−o(1))n2 logn non-isomorphic

minimum genus embeddings of K3
n in each, the orientable and the non-orientable

surface of Euler genus 1
6
(n− 2)(n+ 3)(n− 4).

Proof. Let In be the number of non-isomorphic minimum genus embeddings
of K3

n. Here we will only deal with the orientable case; for the non-orientable
embeddings, arguments are the same.

Recall that in the construction of the embedding set En = {T ′1, . . . , T ′n} of
K3

n, for every odd vertex i ∈ [n− 2] we arbitrarily pick a transition ai, i+ 1, bi
in Ti ∈ En−2, and insert a subtrail Ei. Since i + 1 appears exactly n−4

2
times

in Ti, different choice of transitions through i + 1 will give us different trails
T ′i and T ′i+1. Also, the choice of consecutive odd-even pairs i, i + 1 gives us a
perfect matching of Kn−2. It is easy to see that any perfect matching of Kn−2
can be used as such a pairing and this will give us different embedding sets
En. Moreover, fixing a perfect matching, for example, i, i + 1 for every odd i,
we can exchange i and i + 1 to get a new embedding set. Note that x and y
are symmetric in our construction, and can be exchanged.
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Let Rn denote the resulting number of inequivalent embedding sets. Then
we have:

Rn ≥
1

2

(
n− 4

2

)n−2
2

(n− 3)!! 2
n−2
2 Rn−2.

Therefore,

logRn ≥ log

n−2
2∏

k=2

(k − 1)k(2k − 1)!! 2k−1

≥ log
(n−4

2
)!

n−2
2 2

n
2
(n
2
−2)∏n−4

2
k=2 k!∏n−6

2
k=1 k!

=
n(n− 4)

4
log

n− 4

2e
+O(n2)

= (1
4
− o(1))n2 log n .

That means that there are at least 2( 1
4
−o(1))n2 logn inequivalent minimum genus

embeddings.
If φ1 and φ2 are non-equivalent but isomorphic embeddings, then there is an

automorphism α such that φ1 is equivalent with φ2α. Each such automorphism
is determined by the values α(i) (i ∈ [n]), i.e., by the permutation α|Xn of order
n. This means that there are at most n! embeddings that are isomorphic
with φ1. Thus, the number In of isomorphism classes of embeddings is at
least Rn/n!. Since log(n!) = (1 + o(1))n log n, the denominator in the lower
bound on log In decreases the value of logRn insignificantly, and thus log In ≥
(1
4
− o(1))n2 log n. This completes the proof. �

5. Hypergraphs with multiple edges

In this section we are going to investigate the genus of complete 3-uniform
graphs with multiple edges. These results will partially answer the question the
authors asked in [6]. In that work, the genus of random bipartite graphs Gn1,n2,p

is considered, where n1 � 1 and n2 is a constant, and the edge probabilities

are p = Θ(n
−1/3
1 ). In that regime, the following hypergraph occurs. Let mK3

n

be the complete 3-uniform hypergraph where each triple occurs m times, i.e.,
each edge of K3

n has multiplicity m. In this situation, each trail Tm
i in the

embedding set Emn is an Eulerian circuit in m(Kn − i). Similarly, we say two
trails Ti and Tj are strongly compatible (compatible) if transitions ajb appear
in Ti exactly t times, then transitions bia (aib or bia) appear in Tj exactly t
times. It is easy to see that Theorem 2.3 is still true in this case, the proof is
similar and we omit the details. Therefore, we have the following result.
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Theorem 5.1. If n ≥ 4 is even and m ≥ 2, then g(mK3
n) = (n−2)(mn(n−1)−12)

24

and g̃(mK3
n) = (n−2)(mn(n−1)−12)

12
.

3 3

33

4

4

2 2
1

Figure 4. A non-orientable embedding of 2K3
4 on the Klein bottle.

Proof. The lower bound follows by Lemma 2.1. To see the upper bound, we
will give an inductive construction on m.

Suppose Emn = {Tm
1 , . . . , T

m
n } is a (strong) embedding set of mK3

n, and
suppose that En = {T1, . . . , Tn} is a (strong) embedding set of K3

n. For every
odd i ∈ [n], suppose the transition ai, i+ 1, bi is in both Tm

i and Ti. Note that
by our construction, such transition exists, and actually we have at least n−2

2
such transitions for every i. We arbitrarily pick one such transition ai, i+1, bi.
Since Ti also contains the transition ai, i+ 1, bi, we break Ti between i+ 1 and
bi, and we write Ti by starting with bi and end with ai, i + 1. We also break
transition ai, i + 1, bi in Tm

i , and insert Ti between i + 1 and bi. For the case
i + 1, we do the same things on transition bi, i, ai. Therefore, we will get a
(strong) embedding set Em+1

n of (m + 1)K3
n. It is easy to verify the (strong)

compatibility among trails in Em+1
n .

The described construction works in all cases except when n = 4, and we
look for the non-orientable embeddings of mK3

4 . Since g(K3
4) = 0, the base

case of induction for the non-orientable genus of mK3
4 is when m = 2. In this

case, we construct the following non-orientable embedding set E24 on the Klein
bottle (see Figure 4 for the corresponding embedding):

T 2
1 : 3, 2, 4, 2, 3, 4;

T 2
2 : 4, 1, 3, 4, 1, 3;

T 2
3 : 1, 4, 2, 1, 4, 2;

T 2
4 : 2, 3, 1, 3, 2, 1.
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The induction step follows the same argument as when n ≥ 6. �

Let us observe that the embedding ofmK3
n described in the proof of Theorem

5.1 (with the exception of the non-orientable case when n = 4) is just a
branched covering from a quadrilateral embedding of K3

n where each vertex
i ∈ Xn is a branch point with branching degree m.

References

[1] L. W. Beineke and R. J. Wilson, editors. Topics in topological graph theory, volume
128 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 2009.

[2] H. S. M. Coxeter. Self-dual configurations and regular graphs. Bull. Amer. Math. Soc.,
56:413–455, 1950.

[3] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Heidelberg, fourth edition, 2010.

[4] J. L. Gross and T. W. Tucker. Topological graph theory. Dover Publications, 2001.
[5] P. J. Heawood. Map-colour theorem. Quart. J. Pure Appl. Math., 24(4):332–338, 1890.
[6] Y. Jing and B. Mohar. The genus of a random bipartite graph. Canad. J. Math.
[7] Y. Jing and B. Mohar. The genus of complete 3-uniform hypergraphs. The odd case.

In preparation.
[8] M. Jungerman, S. Stahl, and A. T. White. Imbeddings of hypergraphs. Congr. Numer.,

29:545–557, 1980.
[9] B. D. McKay and R. W. Robinson. Asymptotic enumeration of Eulerian circuits in the

complete graph. Combin. Probab. Comput., 7(4):437–449, 1998.
[10] B. Mohar and C. Thomassen. Graphs on surfaces. Johns Hopkins Studies in the Math-

ematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2001.
[11] T. D. Parsons, G. Pica, T. z. Pisanski, and A. G. S. Ventre. Orientably simple graphs.

Math. Slovaca, 37(4):391–394, 1987.
[12] J. M. Rahn. The genus of a block design. In Proceedings of the Sundance conference on

combinatorics and related topics (Sundance, Utah, 1985), volume 50, pages 255–268,
1985.

[13] G. Ringel. Map color theorem. Springer-Verlag, New York-Heidelberg, 1974. Die
Grundlehren der mathematischen Wissenschaften, Band 209.

[14] G. Ringel and J. W. T. Youngs. Solution of the Heawood map-coloring problem. Proc.
Nat. Acad. Sci. U.S.A., 60:438–445, 1968.

[15] C. Thomassen. The graph genus problem is NP-complete. J. Algorithms, 10(4):568–576,
1989.

[16] H. Tietze. Famous problems of mathematics. Solved and unsolved mathematical prob-
lems from antiquity to modern times. Authorized translation from the second (1959)
revised German edition. Edited by B. K. Hofstadter and H. Komm. Graylock Press,
New York, 1965.

[17] A. T. White. Graphs of groups on surfaces, volume 188 of North-Holland Mathematics
Studies. North-Holland, Amsterdam, 2001.

[18] J. W. T. Youngs. Minimal imbeddings and the genus of a graph. J. Math. Mech.,
12:303–315, 1963.



THE GENUS OF COMPLETE 3-UNIFORM HYPERGRAPHS 18

Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
E-mail address: yifanjing17@gmail.com

Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
E-mail address: mohar@sfu.ca


	1. Introduction
	2. Embeddings of complete 3-uniform hypergraphs
	3. Complete 3-uniform hypergraphs of even order
	4. Number of non-isomorphic embeddings
	5. Hypergraphs with multiple edges
	References

