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Abstract. In the literature, the notion of discrepancy is used in several contexts,
even in the theory of graphs. Here, for a graph G, {−1, 1} labels are assigned to
the edges, and we consider a family SG of (spanning) subgraphs of certain types,
among others spanning trees, Hamiltonian cycles. As usual, we seek for bounds on
the sum of the labels that hold for all elements of SG, for every labeling.
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1. Introduction

The thorough study of discrepancy theory started with Weyl [15] and quickly
gained several applications in number theory, combinatorics, ergodic theory, discrete
geometry, statistics etc, see the monograph of Beck and Chen [3] or the book chapter
by Alexander and Beck [1].

We touch upon only the combinatorial discrepancy of hypergraphs. Given a
hypergraph (X,E), and a mapping f : X → {−1, 1}, for an edge A ∈ E let
f(A) :=

∑
x∈A f(x). The discrepancy of f is D(X,E, f) = maxA∈E |f(A)|, while

the discrepancy of the hypergraph (X,E)

D(X,E) := min
f

D(X,E, f).

In our case X = E(G) and E = SG ⊂ 2E(G), and with a slight abuse of notation
we write D(G,SG) for short.

Erdős, Füredi, Loebl, and Sós [11] studied the case G = Kn, the complete graph on
n vertices, and SG is the set of copies of a fixed spanning tree Tn with maximum degree
∆. They showed the existence of a constant c > 0, such that D(G,SG) > c(n−1−∆).
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Erdős and Goldberg [10] defined dis(A,B) := e(A,B) − e(G)|A||B|/
(
n
2

)
, where

A,B ⊂ V (G) and A ∩ B = ∅. They showed that for every ε > 0 there exists an
ε′ > 0 such that in every graph G with e = e(G) > v(G) = n, there are disjoint sets
A,B ⊂ V (G), |A|, |B| ≤ εn, and dis(A,B) > ε′

√
en.

Here we investigate the discrepancy of (spanning) trees, paths and Hamilton cycles.
That is for a graph G let SG be the set of spanning trees (Tn), trees (T ), Hamiltonian
paths (Pn), paths (P), or Hamilton cycles (H).

Usually, one expects big discrepancy if the hypergraph has many edges. Since for
every graph G, either G or G is connected, we have D(Kn, Tn) = n − 1. Beck [2]
showed that there is a graph F on n vertices and 2n edges such that in every two-
coloring of its edge set there exists a monochromatic path of length cn, that is
D(F,P) = cn. Another example for this is the interpretation of the result of Burr,
Erdős and Spencer [6], namely that R(mK3,mK3) = 5m. That is if k ·K3 is the set
of triangle factors in Kn, n = 3k and n is divisible by 5, then D(Kn, k ·K3) = n/5.

We first consider the discrepancy of Hamilton cycles, and show that, roughly
speaking, if G has sufficiently large minimum degree then for every labeling of E(G)
with +1,−1 there is a Hamilton cycle with linear discrepancy.

Theorem 1.1. Let c > 0 be an arbitrarily small constant and n be sufficiently large.
Let G be a graph of order n with δ(G) ≥ (3/4+c)n. Then we have D(G,H) ≥ cn/32.

Figure 1 below shows that the minimum degree condition in Theorem 1.1 is the
best possible. In this example, let G = Kn −Kn/4, i.e., |V (G)| = n is divisible by 4,
|V1| = n/4, |V2| = 3n/4, δ(G) = 3n/4. Assign −1 to all edges incident to V1 and +1
to the rest of the edges. As each Hamilton cycle in G touches V1 exactly n/4 times,
they all have zero discrepancy.

V1 V2

Figure 1. G with δ(G) = 3n/4 and zero Hamilton cycle discrepancy.

For the existence of a Hamilton cycle, Dirac’s Theorem requires only minimum
degree n/2. We could also push down the minimum degree requirement for the
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existence of a linear discrepancy Hamilton cycle, if we have some local restriction on
the coloring.

For ν > 0 real number, we say a vertex is ν-balanced if it has at least νn edges
with label +1, and at least νn edges of label −1, otherwise it is ν-unbalanced.

Theorem 1.2. Let c, d, ν be positive numbers satisfying c ≥ 8ν and d ≥ 4ν. Let G be
a graph of order n, where δ(G) ≥ (1/2+ c)n. Assume that the edges of G are labelled
by either +1 or −1, such that the number of ν-balanced vertices is at least (3/4+d)n.
Then there exists a Hamilton cycle in G with discrepancy at least ν2n/500.

The number of the balanced vertices in the graph in Figure 1 is 3n/4, hence the
condition on the size of the balanced set in Theorem 1.2 is tight.

In both of the theorems above, G is dense. However, the sparsity of a graph does
not imply small discrepancy, the expansion is a more important factor. Let G ∈ Gn,d
be a randomly, uniformly selected d-regular graph on n vertices. A property P
holds with high probability, w.h.p., if for every ε > 0 there exist an nε such that
Pr(G ∈ Gn,d, G ∈ P) ≥ 1 − ε. Similarly, property P holds asymptotically almost
surely, a.a.s., if limn→∞ Pr(G ∈ Gn,d, G ∈ P) = 1.

Theorem 1.3. Let G ∈ Gn,3. Then there exists a constant c > 0 such that a.a.s. we
have D(G, Tn) ≥ cn.

For planar graphs, one can expect sublinear discrepancy of spanning trees; we
managed to give asymptotically sharp bounds.

Theorem 1.4. Let G be a planar graph on n vertices. Then there exists a real
number c > 0 such that D(G, Tn) ≤ c

√
n.

The bounds, up to the constant factor are best possible. Let P 2
k := Pk�Pk be the

k × k grid.

Theorem 1.5. D(P 2
k , Tn) ≥ ck for some c > 0, where n = k2.

If we drop the condition of spanning subgraph, then the discrepancies can be linear
in the number of vertices.

Proposition 1.6. Let k, ` be some positive integers. Then D(Pk�P`,P) > k`/8−
max{k, `}/8−min{k, `}.

We have the following corollary since paths are also trees.

Corollary 1.7. D(Pk�P`, T ) > k`/8−max{k, `}/8−min{k, `}.

Let us make some easy observations which nevertheless give motivations for the
above theorems and to those proofs. The graph P2�Pk has exponentially many
spanning trees, but still D(P2�Pk, T2k) ≤ 3. To see this, we partition the graph
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into a 2 × dk/2e grid and a 2 × bk/2c grid, and label the edges of the first grid by
−1, of the second grid by +1. We label the edge shared by two sub-grids arbitrarily.
The situation for Pk�Pk, the k × k grid, is similar: cut the grid into two halves
and label +1 the upper, and −1 the lower region. Since any spanning tree is cut at
most k times, D(Pk�Pk, Tn) ≤ k− 1. For not necessarily spanning trees, obviously,
D(G, T ) ≥ d∆(G)/2e.

Remark. Komlós, Sárközy and Szemerédi [12] showed that for every c > 0 and ∆,
there is n0 such that if G is a graph of order n > n0 with δ(G) > (1/2+ c)n, and T is
a tree of order n with maximum degree less than ∆, then G contains T as a subgraph.
By using the standard proof method of connected matchings, Theorems 1.1 and 1.2
imply the following corollaries.

Corollary 1.8. Let ∆ and c > 0 be given. Then there exists a constant n0 with the
following properties. If n > n0, T is a tree of order n with ∆(T ) ≤ ∆, and G is
a graph of order n with δ(G) > (3/4 + c)n, then there is a subgraph of G which is
isomorphic to T with discrepancy Θ(n).

Corollary 1.9. Let ∆ and c, d, ν > 0 be given. Then there exists a constant n0 with
the following properties. If n > n0, T is a tree of order n with ∆(T ) ≤ ∆, G is
a graph of order n with δ(G) > (1/2 + c)n, and the number of ν-balanced vertices
is at least (3/4 + d)n, then there is a subgraph of G which is isomorphic to T with
discrepancy Θ(n).

The key part of the proof is, after applying the degree form of the regularity lemma,
find a high discrepancy perfect matching in the cluster graph, which is automatically
a connected matching. The proof is standard application of the method of Komlós,
Sárközy and Szemerédi [12], and we omit further details.

Notation. We let N+(v) to denote the set of neighbors u of v such that uv is
labelled by +1. Similarly, N−(v) denotes the set of neighbors u of v such that uv
is labelled by −1. By definition N(v) = N+(v) ∪ N−(v). We let d+(v) = |N+(v)|,
d−(v) = |N−(v)| and d(v) = d+(v) + d−(v). Suppose U ⊆ V (G), we define N(U) =
{v ∈ V (G) | ∃u ∈ U, uv ∈ E(G)}. We say u is a positive neighbor of v if u ∈ N+(v),
and u is a negative neighbor of v if u ∈ N−(v). Suppose H is a subgraph of G, we
define f(H) to be the sum of labels of all the edges of H, where f : E(G)→ {1,−1}.

Structure of the paper. The paper is organized as follows. In Section 2, we
discuss the discrepancy of Hamilton cycles. In Section 3, we prove Theorem 1.3 for
random 3-regular graphs. Section 4 contains some results of discrepancies for grids
and planar graphs.
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2. Discrepancy of Hamilton cycles

In this section, we study the discrepancy of Hamilton cycles. The first tool we use
is the following generalization of Dirac’s Theorem [14].

Lemma 2.1. Let G = (V,E) be a graph and let c > 0 be a real number. Suppose
E ′ ⊆ E such that E ′ induces a linear forest in G. If δ(G) ≥ (1

2
+ c)n and |E ′| ≤ 2cn,

then there exists a Hamilton cycle in G which contains all the edges in E ′.

We will use the following simple lemma at various points:

Lemma 2.2. Let ν, γ > 0. Suppose U ⊆ V (G) with |U | ≥ νn such that for every
u ∈ U , we have |N(u)| ≥ γn. Then there exists a path P of length at least νγn/2,
such that every edge in P contains at least one vertex in U . Moreover, if for every
u ∈ U we have |N(u)\U | ≥ γn, then there exists a path of length at least νγn whose
vertices are alternating between U and N(U) \ U .

Proof. Let H be the collection of edges incident to the vertices in U . We have
e(H) ≥ νγn2/2. This implies H contains a path P of length at least νγn/2. It is
clear that P satisfies all the requirements. The second part of the statement follows
very similarly, considering edges only having exactly one endpoint in U . �

Let G be an n-vertex simple graph with δ(G) ≥ (3/4 + c)n, where c > 0 is a
(possibly small) constant and the edges of G are labelled by either +1 or −1.

Proof of Theorem 1.1. Let a = c/4. The proof is split into two cases.

Case 1: At least (3/4 + c)n vertices in G are a-balanced.
Suppose there exists a vertex v such that less than cn/2 vertices in N(v) have

more than cn negative neighbors in N(v). Let M ⊆ N(v) be the set of such vertices,
hence, |M | < cn/2. Note that each vertex in N(v) has at least (1/2 + 2c)n neighbors
inside N(v), hence G[N(v) \M ] contains a Hamilton cycle H with all edges being
positive. Then we insert those vertices not in N(v) \M one by one to H, so we
obtain a Hamilton cycle with discrepancy at least

|N(v) \M | − 3|V \
(
N(v) \M

)
| ≥ 2cn.

Now suppose that such vertex does not exist. Let S ⊆ V (G) be the set of balanced
vertices which have more positive neighbors. We may assume |S| ≥ (3/4 + c)n/2.
Then for every v ∈ S, each vertex in N+(v) has at least (1/8 + 3c/2)n neighbors in
N+(v). Every vertex of S has at least a negative neighbors, hence, using Lemma 2.2
we get that there exists a negative path P , such that each edge of P contains at least
one vertex in S, and both of the end vertices of P are in S. Moreover, the length of
P is at least an

2
(3
4

+ c). We denote the end vertices of P by x, y.
Next for each vertex v in V (P ) ∩ S, we pick an edge in N+(v). For each vertex

in P but not in S, we pick a negative edge from its neighborhood. We also pick an
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edge ab such that a ∼ x and b ∼ y. We require that all the edges we picked are
disjoint from P and they form a linear forest in G. This is doable, since in each step
we forbid edges incident to the vertices in V ′ ⊆ V (G) with |V ′| < cn/2.

Let G′ be the graph after we delete P from G. By Lemma 2.1, there is a Hamilton
cycle H in G′ containing all the edges we picked. First, we insert the entire path P
by removing the ab edge and adding edges ax and by. We obtain a Hamilton cycle
H1, such that

f(H1) ≤ f(H)− |P |+ 3 ≤ f(H)− an

2

(3

4
+ c
)

+ 3.

If f(H) ≤ 3cn/64, then the above implies that f(H1) ≤ −3cn/64. If f(H) > 3cn/64,
then we can insert the vertices in P one by one to obtain H2, such that we have

f(H2) ≥ f(H) +
|P |
2
− |P |

2
= f(H).

Therefore, G contains a Hamilton cycle with discrepancy at least 3cn/64.

Case 2: There are at least 2cn vertices in G which are not a-balanced.
Suppose there exists a set T containing cn unbalanced vertices, each having at most

an negative neighbors. Let H be a Hamilton cycle in G. The difference between the
number of positive edges and negative edges of H is at most cn, otherwise we are
done. Then for every vertex v ∈ T , N+(v) contains at least (2c− 2a− c

2
)n positive

edges of H and at least (2c− 2a− c
2
)n negative edges of H. For each vertex v in T ,

we pick a positive edge and a negative edge in N+(v) ∩H.
Now we define G′ := G − T . By Lemma 2.1, there is a Hamilton cycle H in G′

that contains all the edges we picked. We can either remove all the negative edges we
picked in H ′ to insert the vertices in T , or remove all the positive edges we picked.
Clearly, G contains a Hamilton cycle with discrepancy at least cn. �

Now we need some preparation to prove Theorem 1.2. Let T be the set of triangles
in G. We define a function

g : V (G)× T→ {−3,−1, 0, 1, 3},

such that for every v ∈ V (G) and triangle T ∈ T, we let g(v, T ) = 0 if v is not a
vertex in T . For T = uvw, we let g(v, T ) be the change in the discrepancy if the edge
uw is changed to the path uvw. To be more precise, we let g(v, T ) be −1, 1,−3, 3 if
the triangle T has type red, blue, dark red, dark blue, respectively, see Figure 2.

We color the vertex v red if there exist at least νn2 triangles T in T such that
g(v, T ) = −1, it is blue, dark red, dark blue if there exist at least νn2 triangles T in
T such that g(v, T ) = 1,−3, 3, respectively. Note that when c > 8ν, every vertex
is colored, since the neighborhood of every vertex spans at least cn2/2 edges. Some



ON THE DISCREPANCIES OF GRAPHS 7

v

−1 +1

+1

v

−1 −1

−1

Type red.

v

−1 +1

−1

v

+1 +1

+1

Type blue.

v

−1 −1

+1

Type dark red.

v

+1 +1

−1

Type dark blue.

Figure 2. The vertex coloring of G.

vertices may have multiple colors under this definition, but we may assume most of
them have only one color, using the following lemma.

Lemma 2.3. Suppose more than νn/3 vertices have more than one colors. Then
there exists a Hamilton cycle of discrepancy at least νn/3.

Proof. Let M ⊆ V (G) be the set of vertices having more than one colors, and
x1, x2, . . . , xνn/3 ∈M . For every xi (1 ≤ i ≤ νn/3), we pick edges aibi and cidi in the
neighborhood of xi, such that g(xi, xiaibi) 6= g(xi, xicidi). We further require that,
all the edges we picked do not contain xi, and they form a linear forest in G. We
can do this, since in each step we forbid less than νn2 edges, but we have at least
νn2 triangles by the definition.

Now we remove x1, x2, . . . , xνn/3 from G, and call the resulted graph G′. By
Lemma 2.1, we can find a Hamilton cycle H in G′ containing all the edges we picked.
In order to insert xi back to H, we can remove either aibi or cidi, and in each step,
the discrepancies differ by at least 2, since |g(xi, xiaibi)−g(xi, xicidi)| ≥ 2. Therefore,
there exists a Hamilton cycle in G with discrepancy at least νn/3. �

The following Lemma is our main tool in the proof.

Lemma 2.4. Let c, ν > 0 with c > 8ν. Let G be a graph with δ(G) ≥ (1/2 + c)n.
Let R,Q ⊆ {red, blue, dark red, dark blue}. Suppose, there is a path P of length
φ(ν)n for some function φ and all edges of it have labels in I ⊆ {+1,−1}, where
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0 < φ(ν) < ν/2, and each edge of P contains at least one vertex with colors in R,
and the other vertices on P have colors in Q. Assume that one of the following holds:

(i) I = {−1}, R = {dark blue}.
(ii) I = {−1}, R = {blue}, dark red /∈ Q.
(iii) R = Q = {dark blue}.
(iv) R = {dark blue}, Q = {blue}.
(v) I = {+1}, R = Q = {red}.
Then if one of (i), (ii), (v) holds, G contains a Hamilton cycle with discrepancy at
least φ(ν)n/2 − 3/2. If one of (iii), (iv) holds, G contains a Hamilton cycle with
discrepancy at least φ(ν)n/4− 3/4.

Proof. Let X be the set of vertices on P with colors in R, and let Y be the set of
vertices with colors in Q. Suppose x, y are the first and the last vertices in P .

Let us focus on (i) first. For every vertex v ∈ X, we pick an edge avbv inside the
neighborhood of v, such that av, bv /∈ V (P ), and g(v, vavbv) = 3. We require that the
edges we picked form a linear forest. This is possible, and we can pick the edges one
by one. For each step, the edge we chose cannot contain a vertex which already used
twice in the previously chosen edges, and two end vertices of the new edge cannot
both already used. Clearly, the number of edges that cannot be chosen is strictly
less than νn2, but we have νn2 options, by the definition of the dark blue vertices.

For every vertex u in Y , we pick an edge aubu in N(u), and we pick the edge ab
such that a ∼ x and b ∼ y, so for the endpoints x and y we pick two edges. Together
with the edges we picked for the vertices in X, we further require that all the edges
we picked are disjoint from P and they form a linear forest in G. Note that the
number of edges we picked is less than cn.

Let G′ be the graph after removing all the vertices in P from G, we have δ(G′) ≥
(1/2 + c/2)n. Now we apply Lemma 2.1, and suppose H is a Hamilton cycle in
G′ containing all the edges we picked. We have two different ways to construct a
Hamilton cycle in G.

We remove the edge ab and add ax, by to insert the entire path P , we denote the
resulted Hamilton cycle by H1. Clearly,

f(H1) ≤ f(H)− |P |+ 3 = f(H)− φ(ν)n+ 3.

We can also insert the vertices in P one by one. That is, for every v ∈ V (P ), we
remove the edge avbv in H and add the edges vav, vbv. We then obtain a Hamilton
cycle H2, and we have

f(H2) ≥ f(H) + 3|X| − 3|Y | = f(H),

since the worst case is when all the vertices in Y are dark red. Therefore, we obtain
a Hamilton cycle in G with discrepancy at least 1

2
(φ(ν)n− 3).
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Now we consider (ii). The ideas are similar: For every vertex v in X, we pick an
edge avbv in N(v) such that the g(v, vavbv) = 1. For every vertex u in Y , we pick an
edge aubu in N(u) such that g(u, uaubu) 6= −3. We also pick ab adjacent to the end
vertices of P , and we require all the edges we picked are disjoint from P , and they
form a linear forest.

We now remove all the vertices in P from G. Let H be the Hamilton cycle in the
resulted graph which contains all the edges we picked. We can either insert the entire
path to H, or insert the vertices one by one. In the second situation, the worst case
is when all the vertices in Y are red. This gives us a Hamilton cycle with discrepancy
at least 1

2
(φ(ν)n− 3).

Note that (ii) implies (v), since we can map −1 to +1, blue to red, and dark blue
to dark red. For cases (iii) and (iv), for vertices in X, we pick edges as we did in
(i). For the vertex u in Y , we pick aubu in N(u) such that g(u, uaubu) is 3 and 1,
respectively. Again we have two ways to obtain the Hamilton cycle in G, insert the
entire path, or insert the vertices one by one. Note that the worst case is when all
the edges in P are labelled by 1. But since we have at least half of the vertices in P
dark blue, the difference of the discrepancies between these two constructions is still
large, and we obtain a Hamilton cycle with discrepancy at least φ(ν)n/4− 3/4. We
omit further details. �

Remark. Note that if we reverse the colors and the labels simultaneously, the same
conclusions in Lemma 2.4 still hold.

With all tools in hand, we are going to prove Theorem 1.2.

Proof of Theorem 1.2. Let M ⊆ V (G) be the set of vertices having more than 1
colors. By Lemma 2.3, we have |M | < νn/3. Let A,B,C,D ⊆ V (G) \M be the set
of blue, red, dark blue and dark red vertices, respectively. By Lemmas 2.2 and 2.4,
we may assume the following properties of G.

(i) At most νn/30 vertices in C (D) have more than νn/4 neighbors in C (D).
Otherwise by Lemma 2.2 we can find a path P of length ν2n/120 either inside C, or
inside D. In both cases, condition (iii) in Lemma 2.4 gives us a Hamilton cycle of
discrepancy at least ν2n/480− 3/4.

(ii) At most νn/30 vertices in C (D) have more than νn/4 neighbors in A (B).
If not, there is a path of length ν2n/120 whose vertices alternate between C and A
(between D and B), and condition (iv) in Lemma 2.4 gives us a Hamilton cycle of
discrepancy at least ν2n/480− 3/4.

(iii) At most νn/3 vertices in A (B) have more than νn/6 negative (positive)
neighbors inside A (B). By the same reason as above, otherwise condition (v) in
Lemma 2.4 gives us a Hamilton cycle of discrepancy at least ν2n/36− 3/2.
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(iv) At most νn/30 vertices in C (D) have more than νn/4 neighbors in D (C). If,
say, at least νn/30 vertices in C have more than νn/4 neighbors in D, then suppose
νn/60 of them have more positive neighbors in D. By Lemma 2.2, there is a positive
path P of length ν2n/240 whose vertices alternate between C and D. We now apply
condition (i) in Lemma 2.4, but in the form that I = {+1} and R = {dark red}.
Thus there exists a Hamilton cycle with discrepancy at least ν2n/480− 3/2.

(v) At most νn/3 vertices in A (B) have more than νn/6 neighbors in B (A). By
the same reason as above, if we have more than νn/3 vertices in A having more than
νn/6 neighbors in B, we may suppose that νn/6 of them have more positive neighbors
in B. Thus by Lemma 2.2 there is a path of length ν2n/72 whose vertices alternate
between A and B. Then we apply condition (ii) in Lemma 2.4 with I = {+1} and
R = {red}, there exists a Hamilton cycle with discrepancy at least ν2n/144− 3/2.

(vi) At most νn/30 vertices in C (D) have more than νn/4 negative (positive)
neighbors in B (A). Otherwise condition (i) in Lemma 2.4 gives a Hamilton cycle of
discrepancy at least ν2n/240− 3/2.

(vii) At most νn/3 vertices in A (B) have more than νn/6 neighbors in C (D). If
not, the condition (iv) in Lemma 2.4 gives a Hamilton cycle of discrepancy at least
ν2n/72− 3/4.

(viii) At most νn/3 vertices in A (B) have more than νn/6 positive (negative)
neighbors in D (C). If not, the condition (i) in Lemma 2.4 gives a Hamilton cycle
of discrepancy at least ν2n/36− 3/2.

Now the approximate structure of G is as follows. The graph induced on C ∪ D
is almost empty, and G[A,C], G[B,D], G[A,B] are almost empty. Almost all the
edges between A and D are negative, and almost all the edges between B and C are
positive. Almost all the edges inside A are positive, and almost all the edges inside
B are negative.

We say a vertex in a set is typical if it behaves as almost all the vertices in this
set, otherwise it is untypical. More precisely, a vertex v ∈ A (B) is typical if it has
less than νn/6 negative (positive) neighbors in A (B), less than νn/6 neighbors in
B (A), less than νn/6 neighbors in C (D), and less than νn/6 positive neighbors in
D (C). A vertex v ∈ C (D) is typical if it has less than νn/4 neighbors in C (D),
less than νn/4 neighbors in A (B), less than νn/4 neighbors in D (C), and less than
νn/4 negative (positive) neighbors in B (A).

The rest of the proof is based on analyzing the number of dark vertices.
Case 1: There exist at most νn/6 dark blue vertices and at most νn/6 dark red
vertices.

In this case, we have |A∪B| ≥ (1− ν
3
)n. Suppose |A| ≥ (1

2
− ν

6
)n, and let A′ ⊆ A

be the set of ν-balanced vertices. Clearly, |A′| ≥ (1
4

+d− ν
6
)n, and each vertex v ∈ A′
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has at least νn negative neighbors. By (iii), (v) and (vii), all but νn vertices in A′

have less than νn/6 negative neighbors inside A, in B and in C. Since |D| ≤ νn/6
and |M | < νn/3, we get a contradiction.
Case 2: There are at least νn/6 dark blue vertices or νn/6 dark red vertices.

Suppose |C| ≥ νn/6. By (i), (ii), (iv), and (vi), we have that at most 2νn/15
vertices in C are untypical, which implies that all the other vertices in C are ν-
unbalanced. Hence |C| ≤ (1

4
− d + 2ν

15
)n, and |B| ≥ (1

2
+ c− 3

4
ν)n, since the typical

vertices in C have at most 3ν/4 vertices outside of B. This also gives us |D| ≤ νn/6,
otherwise we would also have |A| ≥ (1

2
+c− 3ν

4
)n, and this contradicts with A∩B = ∅.

Thus, we have |A| ≤ (1
2
− c + 7ν

12
)n, and actually this implies |A| ≤ 4νn/3. The

reason for this is, first by (iii), (v), (vii), and (viii), A contains at most 4νn/3
untypical vertices. By (v) and (vii), the typical vertices in A have all but at most
νn/3 of their neighbors in A and D. But |A ∪ D| ≤ (1

2
− c + 3ν

4
)n, which means

that all the vertices in A are untypical because of the disjointness of A,B,C,D,M .
Therefore, we have |A∪C ∪D ∪M | ≤ (1

4
− d+ 2ν)n, and thus |B| ≥ (3

4
+ d− 2ν)n.

Let B′ ⊆ B be the set of typical vertices in B, and let C ′ ⊆ C be the set of typical
vertices in C. Clearly, we have |B \B′| ≤ νn and |C \C ′| ≤ 2

15
νn. Let K be a graph

such that V (K) = B′ ∪C ′, and e ∈ E(K) if e is either a negative edge in G[B′] or a
positive edge in G[B′, C ′]. Now, |V (K)| ≥ (1−3ν)n, since besides B \B′ and C \C ′,
we have |A| ≤ 4νn/3, |D| ≤ νn/6, and |M | ≤ νn/3. Also, for every v ∈ V (K),
δK(v) ≥ (1

2
+ c − 3ν)n. This is because, for every u ∈ B′, by (v) and the size of

D and M , all but at most 2νn/3 neighbors of u are in B ∪ C. By (iii) and (viii),
u has at most νn/6 positive neighbors in B and at most νn/6 negative neighbors
in C. By the size of B \ B′ and C \ C ′, we have δK(u) ≥ (1

2
+ c)n − 2νn − 2νn

15
.

Similarly, for every w ∈ C ′, by (i), (ii), (iv), (vi), and the size of M and B \ B′,
δK(w) ≤ (1

2
+ c)n − 2νn − νn

3
. Therefore, K contains a Hamilton cycle H. Since

C ′ is an independent set in K by (i), the number of positive edges in H is at most
2|C ′| ≤ 2|C| ≤ (1

2
− 2d+ ν)n.

Now we go back to G. Note that H is also a Hamilton cycle in G[B′ ∪ C ′]. In
the final step, we are going to insert all the vertices in V (G) \ (B′ ∪ C ′) to H. Let
J = (B \ B′) ∪ (C \ C ′) ∪ A ∪ D ∪M . We have |J | ≤ 3νn. Then after we insert
all vertices in J to H, we obtain a Hamilton cycle in G, which contains at most
(1
2
− 2d + ν)n + 2|J | = (1

2
− 2d + 7ν)n positive edges. Therefore, G contains a

Hamilton cycle with discrepancy at least (4d− 14ν)n > 2νn. �
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3. Discrepancies in random 3-regular graphs

Proof of Theorem 1.3. Buser [7] and later, in a much simpler paper, Bollobás [5]
showed that random regular graphs have expanding properties. More precisely, let

i(G) := min
U

|∂U |
|U |

,

where U ⊂ V (G) with |U | ≤ |V (G)|/2, and ∂U := {v /∈ U | ∃u ∈ U, uv ∈ E(G)}.
(i) Bollobás [5] proved that i(G) ≥ 2−7 for a random 3-regular graph G with high

probability. In particular, it is connected w.h.p..

(ii) Bollobás [4] showed for 3 ≤ j ≤ k, where k is fixed, and Xj stands for
the number of cycles of length j in G ∈ Gn,3, that X3, . . . , Xk are asymptotically
independent Poisson random variables with means λj = 2j/(2j).

(iii) Wormald proved (see [16, Lemma 2.7]) that for a fixed d and every fixed graph
F with more edges than vertices, G ∈ Gn,d a.a.s. contains no subgraph isomorphic to
F .

Fix an arbitrary f : E(G)→ {−1, 1}, denote N and P the subsets of edges, where
f takes −1 and 1, respectively. We may assume that |N | ≤ |P |, i.e., |N | ≤ 3n/4.

Denote by G+ the subgraph of G spanned by P , and let Ai be the set of components
with size i in G+, while ai := |Ai|. The number of components in G+ is t =

∑n
i=1 ai.

Note that (i) means that G is connected w.h.p. so G has a spanning tree T satisfy-
ing that |E(T )∩N | ≤ t−1. Hence if t ≤ (1/2−2−12)n+o(n) or t ≥ (1/2+2−12)n+o(n)
then D(G, Tn) ≥ 2−12n− o(n).

Three edges of N are incident to each element of A1, four edges to each of A2. The
number of edges incident to a component of size at least 3 could be less than four
only if the component contains a cycle, i.e., w.h.p. only in O(1) many components Ai
for i = 3, . . . , 29. For every component larger than 29, and smaller than n/2, w.h.p.
the number of incident edges is at least four by (i).

That is, w.h.p.

2|N | ≥ 3a1 + 4
n∑
i=2

ai −O(1) = 4t− a1 −O(1),

which gives

(1) (1/2− 2−12)n+O(1) ≤ t ≤ |N |/2 + a1/4 +O(1) ≤ 3n/8 + a1/4 +O(1).

Now we consider the number of negative edges. The number of edges in N which
are incident to vertices in A1 is e(G[A1]) + e(G[A1, A1]). Since |N | ≤ |P |, we have

3a1
2
≤ e(G[A1]) + e(G[A1, A1]) ≤ |N | ≤

3n

4
,
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which implies that a1 ≤ n/2. Using the condition (i), we have e(G[A1, A1]) ≥ 2−7a1.
Therefore,

3a1 ≤ 2e(G[A1]) + e(G[A1, A1]) ≤ 2|N | − 2−7a1,

implying
3a1
2

+
a1
27
≤ |N | ≤ 3n

4
,

which gives a1 ≤ (1/2 − 2−10)n w.h.p. With (1) it implies t ≤ (1/2 − 2−12)n +
o(n) w.h.p. That gives us D(G, Tn) ≥ 2−12n− o(n). w.h.p. �

4. Discrepancies of planar graphs

Lemma 4.1. Let C be a vertex cut of a connected graph G, that is V (G) = A∪B∪C
such that there are no edges between A and B, and, say, |A| ≤ |B|. Then D(G, Tn) ≤
|B| − |A|+ |C|.

Proof. Let f(x, y) = 1 if (x, y) ∈ E(A) ∪ E(A,C), f(x, y) = −1 if (x, y) ∈ E(B) ∪
E(B,C) and arbitrary in E(C). Every spanning tree T of G has at most |C| com-
ponents restricted to A ∪ C. It means the number of edges labeled by 1 is at least
|A|+|C|−1−|C| = |A|−1 in T , and the edges labeled by −1 at most |B|+|C|−1. �

Proof of Theorem 1.4. To deduce Theorem 1.4 we need to recall the celebrated planar
separation theorem of Lipton and Tarjan in [13]. It says if G is a planar graph
on n vertices then G has a vertex cut of size O(

√
n) partitioning the graph into

two parts A and B, where n/3 ≤ |A|, |B| ≤ 2n/3. A well-known consequence [9,
Theorem 5] of that theorem is that there exists a cut C and constants c1, c2, c3 such
that n/2− c1

√
n ≤ |A|, |B| ≤ n/2 + c2

√
n and |C| = c3

√
n.

Having the partition above we can use Lemma 4.1 getting that for a planar graph
G, D(G, Tn) ≤ |B| − |A|+ |C| ≤ O(

√
n). �

Lemma 4.2 ([8]). Let S ⊆ Pk�Pk such that (k2 − k)/2 ≤ |S| ≤ (k2 + k)/2. Then
we have |∂S| ≥ k.

Proof of Theorem 1.5. Assume there exists an f : E(Pk�Pk) → {−1, 1} such that
D(Pk�Pk, Tn, f) ≤ k/4. Let P,N and M be the subset of vertices, such that v ∈ P
if all edges incident to v are positive, v ∈ N if all edges incident to v are negative,
and M = V −N − P . Consider an arbitrary Hamiltonian path in Pk�Pk, from the
assumption on f it follows that |P |, |N | ≤ k2/2 + k/8 + 2.

First, we show that |M | ≥ k. If max{|P |, |N |} ≤ (k2−k)/2 then this follows from
|P | + |N | + |M | = k2. That is we may assume (k2 − k)/2 < |P | ≤ k2/2 + k/8 + 2.
Note that ∂P = M . By Lemma 4.2, for sets P of such size we have |∂P | ≥ k, which
means |M | ≥ k, too.
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We identify the vertices of Pk�Pk with coordinate pairs such that (0, 0) belongs
to the bottom left vertex, (k − 1, k − 1) to the upper right vertex. For r, s ∈ {0, 1}
let Xr,s be those vertices (i, j) (0 ≤ i, j ≤ k − 1) for which i = r (mod 2) and j = s
(mod 2). At least one of these sets Xr,s contains at least k/4 vertices of M , say X0,0.
Consider an arbitrary tree T spanned on the vertices X0,1 ∪X1,0 ∪X1,1.

Note that we can extend T to the entire Pk�Pk such that the vertices of X0,0 will
be leaf vertices in the extension. Moreover for (i, j) ∈ X0,0∩M we can connect (i, j)
to T with either an edge labeled by −1 or 1. Fixing any extension to X0,0 \M , let
T+ (T−) be the extension where we use the edge labeled by 1 (−1) for the vertices
X0,0 ∩M . Obviously, |

∑
e∈T+ f(e) −

∑
e∈T− f(e)| ≥ k/2, so either |

∑
e∈T+ f(e)| or

|
∑

e∈T− f(e)| is at least k/4. �

Proof of Proposition 1.6. We show first that D(Pk�P2,P) ≥ k/2. Let us refer to
the graph Pk�P2 as a rectangle with horizontal length k in which the edges are
labeled by f . Let X and Y be the set of the vertical edges labeled by +1 and
−1 respectively. Without loss of generality, we may assume |X| ≥ |Y | and let
x := |X| ≥ k/2, y := |Y |. We consider four paths: P (X) starts from the left-upper
corner goes to right except when it meets an edge e ∈ X at which point it goes down
or up, depending on which one is possible. The path P ′(X) is almost the same, but
it starts from the left-lower corner. Finally the paths P (Y ) and P ′(Y ) are drawn
analogously, those also start from left and go to right, but rise and fall at the edges
belonging to Y . Note that P (X) and P ′(X) each contain X, P (Y ) and P ′(Y ) each
contain Y . P (X) ∪ P ′(X) and P (Y ) ∪ P ′(Y ) have the same set of horizontal edges.

Let z1 :=
∑

e∈P (X)\X f(e), and z2 :=
∑

e∈P ′(X)\X f(e). If max{z1, z2} ≥ 0, then we

are done since one of
∑

e∈P (X) f(e) or
∑

e∈P ′(X) f(e) is at least k/2. If both z1 and

z2 are negative, we have D(Pk�P2,P , f) ≥ x + z1, and D(Pk�P2,P , f) ≥ x + z2.
Considering the paths P (Y ) and P ′(Y ) we also have 2D(Pk�P2,P , f) ≥ 2y−z1−z2,
since the horizontal edges in those carry exactly z1 + z2 negative surplus. Adding
those up, we get 4D(Pk�P2,P , f) ≥ 2x + 2y, that is D(Pk�P2,P , f) ≥ k/2 since
x+ y = k.

In the general case we may assume that k ≤ ` and Pk�P` is referred as a rectangle
with k rows and ` columns. We cut out bk/2c non-touching stripes P2�P`. For every
f : E(Pk�P`)→ {−1, 1}, applying our construction of paths above, without loss of
generality, at least half of the rectangles have a path with more positive edges, and
with discrepancy at least d`/2e. Note also, that these paths can be joined into one
path by adding at most k − 1 edges. Thus, we create a path with discrepancy at
least ⌈

1

2

⌊k
2

⌋⌉⌈ `
2

⌉
− k + 1 >

k`

8
− `

8
− k,

and the result is proved. �
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Remark. Motivated by Theorem 1.1 and D(Kn, k ·K3) = n/5 from [6] we think that
for any c > 0, D(G, k ·K3) = Θ(n) provided that v(G) = n and δ(G) ≥ (3/4 + c)n.
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[8] J. Chvátalová, Optimal labelling of a product of two paths. Discrete Mathematics, 11(3) (1975),

249–253.
[9] H. N. Djidjev, On the problem of partitioning planar graphs. SIAM Journal of Algebraic and

Discrete Methods, 3 (1982), 229–241.
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