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FOURIER SERIES OF CIRCLE EMBEDDINGS

LEONID V. KOVALEV AND XUERUI YANG

Abstract. We study the Fourier series of circle homeomorphisms and
circle embeddings, with the emphasis on Blaschke product approxima-
tion and the vanishing of Fourier coefficients. The analytic properties of
the Fourier series are related to the geometry of the circle embeddings,
and have implications for the curvature of minimal surfaces.

1. Introduction

This paper concerns sense-preserving embeddings f of the unit circle T =

{z ∈ C : |z| = 1} into the complex plane C, with the emphasis on the relation

between the geometry of the image f(T) and the behavior of the Fourier

coefficients f̂ : Z → C. The main questions addressed here are: how often

does the Fourier series of a circle homeomorphism (f(T) = T) terminate in

either positive or negative direction? And does a circle embedding have to

have nonzero Fourier coefficients in some fixed finite subset of Z?

Our main results are Theorem 4.2, Theorem 5.2, and Theorem 5.4. The-

orem 4.2 shows that functions of the form arg(B(ζ)/ζn) are dense in C1(T),

improving a C0-approximation result due to Helson and Sarason [10]. As

a corollary, circle diffeomorphisms of the form ζ 7→ B(ζ)/ζn are uniformly

dense among all sense-preserving circle homeomorphisms (Corollary 4.3).

Theorem 5.2 shows that circle embeddings can have arbitrarily long gaps at

the beginning of their Fourier series. In the opposite direction, Theorem 5.4

provides a Heinz-type estimate |f̂(−1)| + |f̂(1)| ≥ c > 0 (cf. [9]) for circle

embeddings with a horizontally convex image.
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The properties of the Fourier coefficients f̂(n) of circle embeddings f are

of interest for multiple reasons. First, f̂(n) are also the Taylor coefficients of

the harmonic extension of f to the unit disk D. This implies, for example,

that the inequality |f̂(1)| ≤ |f̂(−1)| is an obstruction to the injectivity of

this extension, by a theorem of Lewy [5, p. 20].

When f(T) = T, a lower bound on |f̂(1)|2 + |f̂(−1)|2 yields an upper

bound on the Gaussian curvature of a minimal graph over the unit disk. This

can be viewed as a quantitative form of the Bernstein theorem on minimal

surfaces: every minimal graph over R
2 is a plane. This relation motivated

the Heinz inequality [9] with several subsequent improvements until the

sharp form was achieved by Hall [6]. The optimal Gaussian curvature bound

remains conjectural [5, Conjecture 10.3.2].

Finally, the fact that |f̂(1)| > |f̂(−1)| for every circle homeomorphism, in

its quantitative form, is a key to the conformally natural extension of circle

homeomorphisms devised by Douady and Earle [3].

The paper is organized as follows. Sections 3 and 4 concern the circle

diffeomorphisms whose Fourier series terminates in one direction; they are

closely related to Blaschke products. In Section 5 we consider the circle

embeddings that lack low-frequency Fourier terms. Section 2 collects the

necessary background results.

2. Preliminaries

An embedding is a map that is a homeomorphism onto its image. For

maps f : T → C this property is equivalent to being continuous and injective.

All circle embeddings considered in this paper are sense-preserving. In the

special case f(T) = T we have a circle homeomorphism.

The Fourier coefficients of an integrable function f : T → C are given by

f̂(n) =
1

2π

∫ 2π

0
f(eiθ)e−inθ dθ.

We write supp f̂ = {n ∈ Z : f̂(n) 6= 0}. The Lebesgue space L2(T) and the

sequence space ℓ2(Z) are equipped with inner products

〈f, g〉L2(T) =
1

2π

∫ 2π

0
f(eiθ)g(eiθ) dθ
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and

〈a, b〉ℓ2(Z) =
∑

n∈Z

anbn.

Parseval’s theorem asserts that f 7→ f̂ is an isomorphism, with

(2.1) 〈f, g〉L2(T) =
〈

f̂ , ĝ
〉

ℓ2(Z)
.

Corollary 2.1. For every measurable function f : T → T the set of shifted

Fourier coefficients {f̂(· − k) : k ∈ Z} is an orthonormal basis of ℓ2(Z).

Proof. By virtue of (2.1), the statement is equivalent to {eikθf(eiθ) : k ∈ Z}
being an orthonormal basis of L2(T). The latter follows from the multipli-

cation map g 7→ fg being a unitary operator on L2(T). �

A complex-valued function is called harmonic if its real and imaginary

parts are harmonic. For any continuous function on T the Poisson integral

provides a continuous extension F : D → C, which is harmonic in D [1, p.

169]. The continuity allow us to relate the Taylor coefficients of F to the

Fourier coefficients of f , as

lim
rր1

1

2π

∫ 2π

0
F (reiθ)e−inθ dθ =

1

2π

∫ 2π

0
f(eiθ)e−inθ dθ = f̂(n).

Let us record this as a proposition.

Proposition 2.2. If f : T → C is continuous, then the series

F (z) =

∞
∑

n=0

f̂(n)zn +

∞
∑

n=1

f̂(−n)z̄n

defines a harmonic function in D, for which f provides a continuous bound-

ary extension.

If f : T → C \ {0} is a continuous function, we denote by ∆T arg f the

change of the continuous argument of f(z) as z travels around T once in the

positive direction. Note that ∆T arg f is the winding number of f around 0,

multiplied by 2π.

A (finite) Blaschke product is a function of the form

B(z) = σ
n
∏

k=1

z − zk
1− zkz

where z1, . . . , zn ∈ D and σ ∈ T. Note that ∆T argB = 2πn. We refer to n as

the degree of B. A Blaschke product of degree 1 is a Möbius transformation.
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All Blaschke products in this paper are finite. The recent book [2] is an

excellent reference on such products. We will often use the identity [2,

(3.4.7)], which states that

(2.2) ζ
B′(ζ)

B(ζ)
=

n
∑

k=1

1− |zk|2
|ζ − zk|2

=
n
∑

k=1

PD(zk, ζ) (ζ ∈ T)

where PD is the Poisson kernel for D [11, p. 8],

PD(z, ζ) = Re

(

ζ + z

ζ − z

)

=
1− |z|2
|ζ − z|2 .

Note that for ζ ∈ T the quantity ζB′(ζ)/B(ζ) is the derivative of argB(ζ)

with respect to arg ζ. This derivative can be used for the following elemen-

tary characterization of circle homeomorphisms and diffeomorphisms.

Proposition 2.3. Suppose that f : T → T is a C1-smooth map. Let g(eiθ) =
d arg f(eiθ)

dθ be its derivative. Then

(a) f is a homeomorphism if and only if ∆T arg f = 2π, g ≥ 0 on T and g

is not identically zero on any nontrivial subarc of T;

(b) f is a diffeomorphism if and only if ∆T arg f = 2π and g > 0 on T.

The assumption of g not vanishing on any subarc is assured to hold if f

is real-analytic.

3. Circle homeomorphisms with a terminating Fourier series

In this section f : T → T is a sense-preserving homeomorphism. Our goal

is to identify all such homeomorphisms for which supp f̂ is bounded from

above or from below. It is a simple observation that supp f̂ can be bounded

from both sides only if it is exactly {1}.

Proposition 3.1. If f is a circle homeomorphism with supp f̂ bounded,

then f is a rotation.

Proof. Let a = min supp f̂ and b = max supp f̂ . If a < b, then
〈

f̂(a+ ·), f̂(b− ·)
〉

ℓ2(Z)
= f̂(a)f̂(b) 6= 0

contradicting Corollary 2.1. Hence a = b, which means f(z) = cza for some

constant c. This map is a homeomorphism only when a = 1, i.e., f is a

rotation. �
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In contrast to the above, there are rich families of circle homeomorphisms

whose Fourier series terminates in one direction only.

Proposition 3.2. Suppose f : T → T is a circle homeomorphism. Then

(a) supp f is bounded below if and only if f(ζ) = B(ζ)/ζn for some n ∈
N ∪ {0}, where B is a Blaschke product of degree n+ 1;

(b) supp f is bounded above if and only if f(ζ) = ζn/B(ζ) for some n ∈ N,

where B is a Blaschke product of degree n− 1.

Proof. The “if” part is clear in both cases: the Fourier series of B(ζ)/ζn is

supported on Z ∩ [−n,∞), while the Fourier series of ζn/B(ζ) = ζnB(ζ) is

supported on Z ∩ (−∞, n]. We proceed to “only if”.

(a) Let n = max(0,−min supp f̂) and g(ζ) = ζnf(ζ). By construction

ĝ(k) = 0 for all k < 0. By Proposition 2.2 the function g has a holomorphic

extension to D which is continuous on D. Since |g| ≡ 1 on T, it follows that

g is a Blaschke product [2, Theorem 3.5.2]. Let d be the degree of g. It

follows that ∆T arg g = 2πd. On the other hand, ∆T arg f = 2π because f is

a homeomorphism. Hence ∆T arg(ζ
n) = 2π(d− 1), which means n = d− 1.

Part (a) is proved.

To prove (b), let n = max(0,max supp f̂) and g(ζ) = ζnf(ζ) = ζn/f(ζ).

By construction ĝ(k) = 0 for all k < 0. As in part (a) we conclude that g

is a Blaschke product of some degree d. This time, ∆T arg g = 2πd together

with the relation g(ζ) = ζn/f(ζ) yield d = n− 1, completing the proof. �

Proposition 3.2 does not yet establish the above claim about having rich

families of circle homeomorphisms, because not every quotient of the form

stated in Proposition 3.2 is a homeomorphism of T. As a warm-up, let us

consider the special case n = 2 of Proposition 3.2 (b), that is

(3.1) f(ζ) = σζ2
1− z1ζ

ζ − z1
(z1 ∈ D, σ ∈ T)

Letting B(ζ) = (ζ − z1)/(1− z1ζ), we obtain from (2.2) that

(3.2)
ζf ′(ζ)

f(ζ)
= 2− ζB′(ζ)

B(ζ)
= 2− 1− |z1|2

|ζ − z1|2
(ζ ∈ T)

The expression (3.2) is minimized when |ζ − z1| = 1 − |z1|, and thus its

minimum value is

2− 1 + |z1|
1− |z1|

=
1− 3|z1|
1− |z1|

.
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By Proposition 2.3, the function (3.1) is a circle homeomorphism if and only

if |z1| ≤ 1/3, and is a diffeomorphism if and only if |z1| < 1/3.

To treat both cases of Proposition 3.2 in a unified way, let us consider

the quotients of two Blaschke products. These are precisely the rational

functions that map T to itself.

Lemma 3.3. Suppose B1 and B2 are finite Blaschke products, that is

(3.3) B1(z) = σ1

n
∏

k=1

z − zk
1− zkz

, B2(z) = σ2

m
∏

k=1

z − wk
1− wkz

where z1, . . . , zn, w1, . . . , wm ∈ D and σ1, σ2 ∈ T. The quotient f = B1/B2

is a circle homeomorphism if and only if n−m = 1 and

(3.4)

n
∑

k=1

PD(zk, ζ) ≥
m
∑

k=1

PD(wk, ζ) for all ζ ∈ T

where PD is the Poisson kernel. If, additionally, strict inequality holds

in (3.4) for all ζ ∈ T, then f is a circle diffeomorphism.

Proof. Using (2.2) we get

ζf ′(ζ)

f(ζ)
=
ζB′

1(ζ)

B1(ζ)
− ζB′

2(ζ)

B2(ζ)
=

n
∑

k=1

PD(zk, ζ)−
m
∑

k=1

PD(wk, ζ)

and then the conclusion follows from Proposition 2.3. �

Lemma 3.3 raises the question of verifying the condition (3.4). This con-

dition can be restated in two equivalent ways. First, it is equivalent to saying

that the balayage of the signed measure

n
∑

k=1

δzk −
m
∑

k=1

δwk

onto the boundary of D is a positive measure; see [12, p. 6]. Second, it is

equivalent to the inequality

(3.5)

n
∑

k=1

h(zk) ≥
m
∑

k=1

h(wk)

being true for every positive harmonic function h in D; this follows by ex-

pressing h as a Poisson integral. However, neither of these two interpreta-

tions is easier to verify in practice than the original condition (3.4). If the
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approach used for the special case (3.1) is applied to the analysis of (3.4),

it leads to the sufficient condition

(3.6)

n
∑

k=1

1− |zk|
1 + |zk|

≥
m
∑

k=1

1 + |wk|
1− |wk|

.

However, (3.6) is unsatisfactory as it lacks the Möbius invariance property

that is inherent in condition (3.4) (this invariance is particularly clear from

the form (3.5)).

Let d(z, w) denote the pseudo-hyperbolic distance between z and w, namely

d(z, q) =

∣

∣

∣

∣

z − w

1− zw

∣

∣

∣

∣

(z, w ∈ D)

By construction, d is invariant under the Möbius transformations of D.

Theorem 3.4. If the points z0, . . . , zn, w1, . . . , wn ∈ D satisfy the condition

(3.7) d(zk, wk) ≤
(1− d(zk, z0))(1 − d(wk, z0))

4n
, k = 1, . . . , n,

then the quotient

f(ζ) =

n
∏

k=0

ζ − zk
1− zkζ

(

n
∏

k=1

ζ −wk
1− wkζ

)−1

is a circle homeomorphism. Furthermore, if (3.7) is strict for some k, then

f is a diffeomorphism of T.

The proof requires the following “additive Harnack inequality” for positive

harmonic functions in D.

Lemma 3.5. For every positive harmonic function h on D and all z, w ∈ D

we have

(3.8) |h(z) − h(w)| ≤ 2|z − w|
(1− |z|)(1 − |w|)h(0).

Proof. Since h can be written as a Poisson integral

h(z) =

∫

T

PD(z, ζ) dµ(ζ)

for some measure µ on T [4, Theorem 1.1], it suffices to prove (3.8) for

h(z) = P (z, ζ) with ζ ∈ T. For such h we have

|h(z) − h(w)| =
∣

∣

∣

∣

Re

(

ζ + z

ζ − z
− ζ + w

ζ − w

)
∣

∣

∣

∣

≤
∣

∣

∣

∣

2(z − w)ζ

(ζ − z)(ζ −w)

∣

∣

∣

∣

≤ 2|z − w|
(1− |z|)(1 − |w|)
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which proves (3.8), as h(0) = 1. �

Equality is sometimes attained in (3.8), for example if h(z) = P (z, 1),

w = 0, and 0 < z < 1. However, (3.8) is not sharp for general z, w ∈ D. It

may be of interest to obtain a sharp form of the additive Harnack inequality.

Proof of Theorem 3.4. By Proposition 3.3, we only need to estimate

(3.9)

n
∑

k=0

PD(zk, ζ)−
n
∑

k=1

PD(wk, ζ)

from below. By composing f with a Möbius transformation, we can achieve

z0 = 0 without affecting the homeomorphism property of f . Then (3.7)

takes the form

(3.10) d(zk, wk) ≤
(1− |zk|)(1 − |wk|)

4n
, k = 1, . . . , n.

Using Lemma 3.5 and noting that |zk − wk| ≤ 2d(zk, wk), we arrive at

|PD(zk, ζ)− PD(wk, ζ)| ≤
4d(zk, wk)

(1− |zk|)(1 − |wk|)
≤ 1

n
.

Since PD(0, ζ) = 1 on T, we conclude that (3.9) is bounded from below

by 1 − n(1/n) = 0. Furthermore, if 0 is attained, then equality must hold

in (3.10) and consequently in (3.7) for all k. �

We can finally show that the circle homeomorphisms of the two types

identified by Proposition 3.2 indeed exist for all values of n. The following

corollary of Theorem 3.4 is obtained by specializing the theorem to the cases

wk ≡ 0 and zk ≡ 0.

Corollary 3.6. Suppose z1, . . . , zn ∈ D.

(a) If for k = 1, . . . , n − 1

|zk| ≤
1− |zn|
4(n− 1)

(1− d(zk, zn))

then the function

f(ζ) = ζ1−n
n
∏

k=1

ζ − zk
1− zkζ

is a circle homeomorphism.

(b) If |zk| ≤ 1/(4n + 1) for k = 1, . . . , n, then the function

f(ζ) = ζn+1
n
∏

k=1

1− zkζ

ζ − zk
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is a circle homeomorphism.

4. Approximation by rational circle homeomorphisms

The goal of this section is to show that the circle homeomorphisms with a

terminating Fourier series (i.e., those identified by the Proposition 3.2) are

dense in the set of all circle homeomorphisms, with respect to the uniform

norm. A similar approximation result for continuous functions was obtained

by Helson and Sarason [10], see also [2, Theorem 4.3.1].

Theorem 4.1. [10, page 9] Every continuous function u : T → R can be

approximated uniformly by functions of the form arg(B(ζ)/ζn) where B is

a Blaschke product and n is the degree of B.

Given a circle homeomorphism f : T → T, we can take a continuous

branch of u(ζ) = arg(f(ζ)/ζ) on T and apply Lemma 4.1 to it. It follows that

f can be uniformly approximated by functions of the form B(ζ)/ζn−1 with

n = degB. The same argument, applied to v(ζ) = arg(ζ/f(ζ)), yields an

approximation to f of the form ζn+1/B(ζ). However, this does not achieve

our goal stated above, since it is not guaranteed that the approximating

function is a circle homeomorphism.

We need a stronger form of the Helson-Sarason theorem, with approxi-

mation in the C1 norm instead of the uniform norm. A smooth function

u : T → R can be interpreted as a smooth 2π-periodic function on R, and we

use this interpretation to define its derivative u′ : T → R and the C1 norm

‖u‖C1 = supT |u|+ supT |u′|.

Theorem 4.2. Every C1-smooth function u : T → R can be approximated

in the C1 norm by functions of the form arg(B(ζ)/ζn) where B is a Blaschke

product and n is the degree of B.

Before proving Theorem 4.2, let us observe that it implies that circle

diffeomorphisms with a terminating Fourier series are uniformly dense in

the set of circle homeomorphisms.

Corollary 4.3. Every circle homeomorphism f : T → T is a uniform limit

of circle diffeomorphisms of the form ζ 7→ B(ζ)/ζn−1 where B is a Blaschke

product of degree n. It is also a uniform limit of circle diffeomorphisms of

the form ζ 7→ ζn+1/B(ζ) where B is a Blaschke product of degree n.
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Proof. It is straightforward to approximate f by a diffeomorphisms g : T →
T in the uniform norm. Indeed, f lifts to a continuous strictly increasing

function F : R → R such that f(eiθ) = eiF (θ). It is easy to see that the con-

volution of F with a smooth bump function has strictly positive derivative,

and thus descends to a circle diffeomorphism.

The function u(ζ) = arg(g(ζ)/ζ) is C1-smooth, with u′ > −1 on T. The-

orem 4.2 provides C1 approximation to u of the form v(ζ) = arg(B(ζ)/ζn).

When ‖u − v‖C1 is small enough, we have v′ > −1 and therefore the map

ζ 7→ B(ζ)/ζn−1 is a circle diffeomorphism.

To prove the second statement, apply Theorem 4.2 to the function u(ζ) =

arg(ζ/g(ζ)) for which u′ < 1, and conclude as above. �

Our first step toward the proof of Theorem 4.2 is to approximate a con-

tinuous function with zero mean by a linear combination of Poisson kernels

with integer coefficients.

Lemma 4.4. Suppose h : T → R is continuous and
∫

T
h = 0. Then for any

ǫ > 0 there exist n ∈ N and zk, wk ∈ D (k = 1, . . . , n) such that

(4.1)

∣

∣

∣

∣

∣

h(ζ)−
n
∑

k=1

PD(zk, ζ) +

n
∑

k=1

PD(wk, ζ)

∣

∣

∣

∣

∣

< ǫ for all ζ ∈ T.

Proof. Let H be the harmonic extension of h to the unit disk. We fix r < 1

such that

(4.2) |H(rζ)− h(ζ)| < ǫ/3 for all ζ ∈ T.

In what follows it will be convenient to consider h as a 2π-periodic function

on R, writing h(θ) instead of h(eiθ). Similarly, we write Pr(θ) for PD(re
iθ, 1).

Since h has zero mean, there exists a C1-smooth 2π-periodic function g

such that g′ = h. The Poisson integral of h can be written in terms of g via

the integration by parts:

H(reiθ) =
1

2π

∫ 2π

0
h(φ)Pr(φ− θ) dφ

= − 1

2π

∫ 2π

0
g(φ)

∂Pr(φ− θ)

∂φ
dφ

(4.3)

Denote

Qr(θ) =
∂Pr(θ)

∂θ
and Rr(θ) =

∂2Pr(θ)

∂θ2
.
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For sufficiently large n, the last integral in (4.3) is well approximated by an

n-point Riemann sum, meaning that

(4.4)

∣

∣

∣

∣

∣

H(reiθ) +
1

2πn

n
∑

k=1

g(φk)Qr(φk − θ)

∣

∣

∣

∣

∣

<
ǫ

3

where φk = 2πk
n .

For 1 ≤ k ≤ n, let ak = −g(φk)/n. By Taylor’s theorem,

(4.5) Pr(φk − θ + ak)− Pr(φk − θ)− akQr(φk − θ) =
Rr(ψk)

2
a2k

for some ψk. Both g and Rr are bounded on R, being continuous and

periodic. Therefore, (4.5) implies

(4.6) |Pr(φk − θ + ak)− Pr(φk − θ)− akQr(φk − θ)| ≤ C

n2

with a constant C independent of n. Summing over k and letting n be

sufficiently large, we conclude that

(4.7)

∣

∣

∣

∣

∣

n
∑

k=1

{Pr(φk − θ + ak)− Pr(φk − θ)− akQr(φk − θ)}
∣

∣

∣

∣

∣

<
ǫ

3

Finally, combine (4.2), (4.4) and (4.7) to obtain
∣

∣

∣

∣

∣

h(θ)−
n
∑

k=1

{Pr(φk − θ + ak)− Pr(φk − θ)}
∣

∣

∣

∣

∣

< ǫ

from where the lemma follows by letting zk = rei(φk+ak) and wk = reiφk . �

The approximation provided by Lemma 4.4 yields approximation in the

C1 norm by a quotient of Blaschke products, as shown below.

Lemma 4.5. Suppose u : T → R is a C1 smooth function, and the numbers

z1, . . . , zn, w1, . . . , wn ∈ D are such that

(4.8)

∣

∣

∣

∣

∣

u′(ζ)−
n
∑

k=1

PD(zk, ζ) +

n
∑

k=1

PD(wk, ζ)

∣

∣

∣

∣

∣

< ǫ

for all ζ ∈ T. Then there exists σ ∈ T such that the rational function

B(ζ) = σ

n
∏

k=1

ζ − zk
1− zkζ

1− wkζ

ζ − wk

satisfies ‖u− argB‖C1 < (π + 1)ǫ for some continuous branch of argB.
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Proof. Recall from (2.2) that the derivative of argB(eiθ) with respect to θ

is equal to
n
∑

k=1

PD(zk, e
iθ)−

n
∑

k=1

PD(wk, e
iθ)

By (4.8), the derivative of the difference u(eiθ)− argB(eiθ) is less than ǫ in

absolute value. By choosing σ so that argB(1) = u(1) and using the mean

value theorem, we conclude that |u(eiθ)−argB(eiθ)| < πǫ for all θ ∈ [−π, π].
The estimate for the C1 norm of u− argB follows. �

The combination of Lemmas 4.4 and 4.5 yields an approximation result

similar to Theorem 4.2 but with the quotient of two Blaschke products

instead of a Blaschke product divided by a monomial. The following result

will allow us to shift the poles of the quotient to 0.

Lemma 4.6. For every z0 ∈ D and every ǫ > 0 there exist n ∈ N and

z1, . . . , zn−1 ∈ D such that

(4.9)

∣

∣

∣

∣

∣

n−1
∑

k=0

P (zk, ζ)− n

∣

∣

∣

∣

∣

< ǫ for all ζ ∈ T.

Specifically, we can take zk = z0 exp(2πik/n).

Proof. Fix ζ ∈ T. Let r = |z0| and choose R such that r < R < 1. The

rational function ψ(z) = (ζ + z)/(ζ − z) is holomorphic and bounded by

M = (1 + R)/(1 − R) on the disk |z| ≤ R. Theorem 2.1 [13] asserts that

uniform Riemann sums converge exponentially fast to the integral of ψ over

|z| = r, namely

(4.10)

∣

∣

∣

∣

∣

2π

n

n−1
∑

k=0

ψ(zk)−
∫ 2π

0
ψ(reiθ) dθ

∣

∣

∣

∣

∣

≤ 2πM

(R/r)n − 1

where zk = z0 exp(2πik/n). By the mean value property
∫ 2π
0 ψ(reiθ) dθ =

2πψ(0) = 2π. Multiplying (4.10) by n/(2π) we obtain

(4.11)

∣

∣

∣

∣

∣

n−1
∑

k=0

ψ(zk)− n

∣

∣

∣

∣

∣

≤ 2πMn

(R/r)n − 1

The right hand side of (4.11) tends to 0 as n → ∞. This and the identity

Reψ(zk) = PD(zk, ζ) yield (4.9). �

The following is a corollary of Lemmas 4.4 and 4.6.
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Corollary 4.7. Suppose h : T → R is continuous and
∫

T
h = 0. Then for

any ǫ > 0 there exist n ∈ N and z1, . . . , zn ∈ D such that

(4.12)

∣

∣

∣

∣

∣

h(ζ)−
n
∑

k=1

PD(zk, ζ) + n

∣

∣

∣

∣

∣

< ǫ for all ζ ∈ T.

Proof. Lemma 4.4 yields an approximation of the form

(4.13) max
ζ∈T

∣

∣

∣

∣

∣

h(ζ)−
n
∑

k=1

PD(zk, ζ) +

n
∑

k=1

PD(wk, ζ)

∣

∣

∣

∣

∣

<
ǫ

2
.

Then we use Lemma 4.6 to replace each term PD(wk, ζ) in (4.13) by a sum

of the form nk −
∑nk−1

j=1 P (wkj , ζ) such that

max
ζ∈T

∣

∣

∣

∣

∣

∣

PD(wk, ζ)−







nk −
nk−1
∑

j=1

P (wkj, ζ)







∣

∣

∣

∣

∣

∣

<
ǫ

2n

thus arriving at (4.12) with some larger value of n. �

Proof of Theorem 4.2. First apply Corollary 4.7 to the function h = u′.

Then use Lemma 4.5 with w1 = · · · = wn = 0. �

5. Vanishing Fourier coefficients

In the investigation of the Fourier coefficients of circle homeomorphisms

a special role is played by the first coefficient f̂(1). Indeed, the identity

map f(ζ) = ζ has all coefficients other than f̂(1) equal to zero. In contrast,

Hall [6] proved that f̂(1) never vanishes for circle homeomorphisms. This

result cannot be strengthened to a lower bound for |f̂(1)|, as is shown by

the Möbius transformation f(ζ) = (ζ + a)/(1 + āζ) which has f̂(0) = a

and consequently |f̂(1)|2 ≤ 1− |a|2 by Parseval’s theorem. However, having

large |f̂(0)| is the only obstruction here: Hall [6, Theorem 2] gave a positive

lower bound for |f̂(0)| + |f̂(1)| among all circle homeomorphisms, which

Weitsman [14] sharpened to |f̂(0)| + |f̂(1)| > 2/π, using [7].

The most notable estimate for the Fourier coefficients of circle homeomor-

phisms is |f̂(−1)|2+ |f̂(1)|2 ≥ 27/(4π2), which is a sharp bound obtained by

Hall [6] after 30 years of gradual improvements, starting with the paper [9]

by Heinz. This line of investigation, motivated by curvature estimates for

minimal surfaces, remains unfinished: see [5, §10.3] and [8].

There are also nonvanishing results for more general circle embeddings.

When f(T) is convex, the Radó-Kneser-Choquet theorem [5, p. 29] states
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that the harmonic extension of f is a diffeomorphism, and therefore f̂(1) 6=
0; more precisely, |f̂(1)| > |f̂(−1)|. When f(T) is star-shaped about 0,

Hall [6, Theorem 2] proved that |f̂(0)|+|f̂ (1)| > 0. The following proposition

shows that the term |f̂(0)| is necessary here.

Proposition 5.1. There exists an embedding f : T → C such that f(T) is

star-shaped about 0 and f̂(1) = 0.

Proof. We look for f such that f(ζ) = f(ζ̄) for all ζ ∈ T, which ensures

that f(T) is symmetric about the real axis, and that f̂ is real-valued. Let

us write f(eiθ) = F (θ) for θ ∈ [0, π], then

f̂(n) =
1

π
Re

∫ π

0
F (θ)e−inθdθ.

Our F will be piecewise linear, which justifies integration by parts:

πf̂(1) = Re iF (θ)e−iθ
∣

∣

∣

∣

π

0

− Re

∫ π

0
iF ′(θ)e−iθdθ = Im

∫ π

0
F ′(θ)e−iθdθ

where the boundary term has zero contribution because F (0) and F (π) are

real.

We choose F piecewise linear with F (0) = 1, F (π) = −1, and F (2π/3) =

x+ iy where x, y > 0 are to be chosen later. Thus,

F ′(θ) =

{

3
2π (x− 1 + iy), 0 < θ < 2π/3;
3
π (−1− x− iy), 2π/3 < θ < π

which yields

Im

∫ π

0
F ′(θ)e−iθdθ = −3(x− 1)

2π

∫ 2π/3

0
sin θ dθ +

3y

2π

∫ 2π/3

0
cos θ dθ

+
3(x+ 1)

π

∫ π

2π/3
sin θ dθ − 3y

π

∫ π

2π/3
cos θ dθ

= −9(x− 1)

4π
+

3
√
3y

4π
+

3(x+ 1)

2π
+

3
√
3y

2π

=
3

4π

(

−x+ 3
√
3y + 5

)

For example, we achieve f̂(1) = 0 with the choice (x, y) = (8, 1/
√
3). The

curve f(T) is a non-convex quadrilateral with vertices 1, x + iy,−1, x − iy,

which is obviously star-shaped about 0. �

By subtracting a constant from f in Proposition 5.1 we can achieve f̂(0) =

f̂(1) = 0; of course, f(T) will no longer be star-shaped about 0 then. On
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the other hand, for every circle embedding f̂(n) must be nonzero for some

positive n. Indeed, a computation with Green’s formula shows that the area

enclosed by f(T) is π
∑

n∈Z n|f̂(n)|2, which implies f̂(n) 6= 0 for some n > 0.

This raises the question: is there a fixed integer N such that

(5.1)
N
∑

n=−N

|f̂(n)| > 0

for every circle embedding f? By Hall’s theorem, N = 1 suffices when f(T)

is star-shaped about 0. The main result of this section shows there is no

universal N for general circle embeddings.

Theorem 5.2. For every N ∈ N there exists an embedding f : T → C such

that f̂(n) = 0 whenever |n| ≤ N .

Proof. Let k = N + 2. We will consider embeddings f : T → C with k-fold

symmetry, that is

(5.2) f(e2πi/kζ) = e2πi/kf(ζ), ζ ∈ T.

As a consequence of (5.2), the Fourier coefficients of f satisfy

e2πni/k f̂(n) = e2πi/kf̂(n), n ∈ Z,

which implies f̂(n) = 0 for all n such that n 6≡ 1 mod k. It remains to

construct an embedding f such that (5.2) holds and f̂(1) = 0, which will

assure f̂(n) = 0 for 1− k < n < 1 + k.

For θ ∈ R we define

g(θ) = arccos(cos θ), ρ(θ) = 1 +
2

π
g(θ), h(θ) = g(θ) +

1

π
g(θ)2.

Since ρ and h are 2π-periodic and continuous, the function

(5.3) f(eiθ) = ρ(kθ)ei(θ+h(kθ))

is well-defined and continuous on T. It has the k-fold symmetry (5.2) by

construction.

Let us check that f is injective. Suppose f(eiθ) = f(eiψ) for some θ, ψ ∈ R.

Then ρ(kθ) = ρ(kψ), which by the definition of ρ implies g(kθ) = g(kψ),

hence h(kθ) = h(kψ). Comparing the arguments of f(eiθ) and f(eiψ) we see

that θ + h(kθ) ≡ ψ + h(kψ) mod 2π. Therefore, θ ≡ ψ mod 2π as required.
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Since g is 2π-periodic and even, it follows that

f̂(1) =
1

2π

∫ 2π

0
ρ(kθ)eih(kθ) dθ =

k

2π

∫ 2π/k

0
ρ(kθ)eih(kθ) dθ

=
1

2π

∫ 2π

0
ρ(t)eih(t) dt =

1

π

∫ π

0
ρ(t)eih(t) dt

But g(t) = t for t ∈ [0, π], which simplifies the above to

πf̂(1) =

∫ π

0

(

1 +
2

π
t

)

ei(t+t
2/π) dt

=

∫ 2π

0
eis ds = 0

where we used s = t+ t2/π. The proof is complete. �

The example constructed in Theorem 5.2 is highly non-convex and is not

star-shaped with respect to any point: see Figure 1 which illustrates the

case k = 3.

-3 -2 -1 1 2

-3

-2

-1

1

2

Figure 1. Three-fold symmetry with f̂(1) = 0

We obtain a nonvanishing result under the assumption of the horizontal

convexity of f(T), which is substantially weaker than convexity. Horizontal

convexity naturally appears in the studies of harmonic maps [5, §3.4].
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Definition 5.3. A subset A ⊂ R
2 is horizontally convex if its intersection

with every horizontal line is connected (i.e., is an interval or empty set).

Referring to a Jordan curve, we say that it is horizontally convex if its

interior region is.

Observe that f(T) is horizontally convex if and only if T is the union of

two arcs on each of which Im f is monotone. These arcs connect the global

maximum of Im f on T to its global minimum; all the extrema of Im f are

global.

The map in Proposition 5.1 shows that the horizontal convexity of f(T)

allows for f̂(1) = 0. We need to consider another Fourier coefficient to

ensure at least one of them is nonzero.

Theorem 5.4. If f : T → C is an embedding with horizontally convex image

f(T), then |f̂(−1)|+|f̂ (1)| > 0. If, in addition, Im f is Lipschitz continuous,

then

(5.4) |f̂(−1)|+ |f̂(1)| ≥ δ

2π

(

1− cos
δ

4L

)

where δ = maxT Im f −minT Im f and L is the Lipschitz constant of Im f .

Proof. By the Borsuk-Ulam theorem (or just the intermediate value theo-

rem), there exists ζ0 ∈ T such that Im f(ζ0) = Im f(−ζ0). Replacing f with

f(αζ) + β for suitable α ∈ T and β ∈ C, we can arrange that ζ0 = 1 and

Im f(ζ0) = 0. Note that this replacement does not affect either side of (5.4).

By virtue of horizontal convexity, Im f does not attain values of opposite

sign on the upper half-circle; the same applies to the lower half-circle. Thus,

Im f(eiθ) sin θ does not attain values of opposite sign on T. Since

(5.5) Re
(

f̂(1) − f̂(−1)
)

=
1

π

∫ 2π

0
Im f(eiθ) sin θ dθ

we find that Re
(

f̂(1)− f̂(−1)
)

6= 0 unless the integrand in (5.5) is iden-

tically zero. But the latter is impossible because the Jordan curve f(T)

cannot be contained in a line.

It remains to prove (5.4). Pick ζ1 ∈ T such that | Im f | ≥ δ/2. Let γ be

the arc of length δ/(2L) centered at ζ1. On this arc we have | Im f | ≥ δ/4 by

the Lipschitz condition. Therefore, the absolute value of the integral in (5.5)
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is at least

δ

4

∫

γ
| sin θ| dθ ≥ δ

4

∫ δ/(4L)

−δ/(4L)
| sin θ| dθ = δ

2

(

1− cos
δ

4L

)

proving (5.4). �

Let us record an application of Theorem 5.4 to minimal surfaces.

Corollary 5.5. Let F : D → R
3 be a conformally parameterized minimal

surface with a continuous extension to T. Let f : T → R
2 be the composition

of F|T with an orthogonal projection R
3 → R

2. If f satisfies the assumptions

of Theorem 5.4, then the Gaussian curvature K of the minimal surface at

F (0) does not exceed
32π2

δ2
(

1− cos δ
4L

)2

where δ and L are as in Theorem 5.4.

Proof. The computation in [5, p. 183] shows that

K ≤ 4

|f̂(−1)|2 + |f̂(1)|2
.

On the other hand, Theorem 5.4 implies

|f̂(−1)|2 + |f̂(1)|2 ≥ 1

2
(|f̂(−1)| + |f̂(1)|)2 ≥ δ2

8π2

(

1− cos
δ

4L

)2

which proves the claimed estimate. �

Question 5.6. Is there a nonvanishing result of the form (5.1) for circle

embeddings with a star-shaped image? On one hand, Hall’s theorem [6,

Theorem 2] gives |f̂(0)| + |f̂(1)| > 0 if f(T) is star-shaped about 0; on

the other, subtracting f̂(0) from the example in Proposition 5.1 shows that

|f̂(0)| + |f̂(1)| can vanish for general star-shaped embeddings.

References

[1] Lars V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1978.
[2] Stephan Ramon Garcia, Javad Mashreghi, and William T. Ross, Finite Blaschke

products and their connections, Springer, 2018.
[3] Adrien Douady and Clifford J. Earle, Conformally natural extension of homeomor-

phisms of the circle, Acta Math. 157 (1986), no. 1-2, 23–48.
[4] Peter L. Duren, Theory of Hp spaces, Pure and Applied Mathematics, Vol. 38, Aca-

demic Press, New York-London, 1970.
[5] , Harmonic mappings in the plane, Cambridge Tracts in Mathematics, vol. 156,

Cambridge University Press, Cambridge, 2004.
[6] R. R. Hall, On an inequality of E. Heinz, J. Analyse Math. 42 (1982/83), 185–198.



FOURIER SERIES OF CIRCLE EMBEDDINGS 19

[7] , A class of isoperimetric inequalities, J. Analyse Math. 45 (1985), 169–180.
[8] , The Gaussian curvature of minimal surfaces and Heinz’ constant, J. Reine

Angew. Math. 502 (1998), 19–28.

[9] Erhard Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss.
Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt. 1952 (1952), 51–56 (German).

[10] Henry Helson and Donald Sarason, Past and future, Math. Scand 21 (1967), 5–16
(1968).

[11] Thomas Ransford, Potential theory in the complex plane, London Mathematical So-
ciety Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995.

[12] Vilmos Totik, Metric properties of harmonic measures, Mem. Amer. Math. Soc. 184
(2006), no. 867, vi+163.

[13] Lloyd N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal

rule, SIAM Rev. 56 (2014), no. 3, 385–458.
[14] Allen Weitsman, On the Fourier coefficients of homeomorphisms of the circle, Math.

Res. Lett. 5 (1998), no. 3, 383–390.

215 Carnegie, Mathematics Department, Syracuse University, Syracuse, NY

13244, USA

E-mail address: lvkovale@syr.edu

215 Carnegie, Mathematics Department, Syracuse University, Syracuse, NY

13244, USA

E-mail address: xyang20@syr.edu


	1. Introduction
	2. Preliminaries
	3. Circle homeomorphisms with a terminating Fourier series
	4. Approximation by rational circle homeomorphisms
	5. Vanishing Fourier coefficients
	References

