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EXTREME VALUES OF THE DERIVATIVE OF BLASCHKE PRODUCTS

AND HYPERGEOMETRIC POLYNOMIALS

LEONID V. KOVALEV AND XUERUI YANG

Abstract. A finite Blaschke product, restricted to the unit circle, is a smooth covering map. The
maximum and minimum values of the derivative of this map reflect the geometry of the Blaschke
product. We identify two classes of extremal Blaschke products: those that maximize the difference
between the maximum and minimum of the derivative, and those that minimize it. Both classes turn
out to have the same algebraic structure, being the quotient of two hypergeometric polynomials.

1. Introduction

A finite Blaschke product of degree n is a rational function of the form

B(z) = α

n∏

k=1

z − ak
1− akz

where a1, . . . , an ∈ D and α ∈ T. Here and below we use the notation D = {z ∈ C : |z| < 1}
and T = {z ∈ C : |z| = 1}. All Blaschke products in this paper are finite. Such products can be

characterized as the rational functions that map T onto itself and have no poles in D. Their many

connections in complex analysis and operator theory are described in the book [8]. In this paper

we focus on the behavior of a Blaschke product on the unit circle T, and more specifically on the

range of its derivative.

Definition 1.1. Given a finite Blaschke product B, let

(1.1) M(B) = sup
|z|=1

|B′(z)|, m(B) = inf
|z|=1

|B′(z)|.

By the maximum principle, M(B) could be equivalently defined as the Hardy space norm

‖B′‖H∞ , i.e., the supremum of |B′| on the unit disk D. The integral Hardy norms of B′ were

studied in [9]. The maximum and minimum of |B′| on the unit circle are of interest for several

reasons.
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• If m(B) > 1, then the restriction of B to T is an expanding map, which has several

consequences for the dynamics of B [11].

• If m(B) < 2, then B has nonempty “thin part” {z ∈ T : |B′(z)| < 2}; the restriction of B

to its thin part extends to a homeomorphism of T [13].

• For a Blaschke product of degree n, the inequality m(B) ≥ n − 1 is equivalent to the

quotient B(z)/zn−1 being a homeomorphism of T. Similarly, M(B) ≤ n + 1 is equivalent

to zn+1/B(z) being a homeomorphism of T. These two constructions provide all circle

homeomorphisms with a Fourier series that terminates in one direction [10].

An obvious property of the extreme values of |B′| is that m(B) ≤ n ≤ M(B), where n is the

degree of B. Indeed, the restriction of B to T is an n-fold cover, which implies that the mean value

of |B′| on T is equal to n. However, the inequality m(B) ≤ n ≤M(B) does not completely describe

the possible pairs (M(B),m(B)) for an n-fold Blaschke product B. Such a description is provided

by the following theorem, the second part of which is our main result.

Theorem 1.2. (i) For every Blaschke product B of degree n the numbers M = M(B) and m =

m(B) satisfy

(1.2)
n

M − n+ 1
≤ m ≤ n− 1 +

n

M

in addition to trivial inequalities

(1.3) 0 < m ≤ n ≤M.

(ii) Conversely, for any triple (n,m,M) ∈ N × (0,∞) × (0,∞) that satisfies (1.2) and (1.3),

there exists a Blaschke product B of degree n for which M(B) =M and m(B) = m.

To further understand the relation between M(B) and m(B), we consider the Blaschke products

for which equality is attained in (1.2).

Definition 1.3. A Blaschke product B is extremal if it attains equality in either part of (1.2):

that is, either

(1.4) m(B) =
n

M(B)− n+ 1

or

(1.5) m(B) = n− 1 +
n

M(B)
.
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We sometimes distinguish between (1.4) and (1.5) as extremal products of the first kind and of the

second kind, respectively.

Extremal Blaschke products of the first kind minimize m(B) for a given value of M(B), which

means that |B′| attains a wide range of values on T. In contrast, extremal products of the second

kind maximize m(B) for a givenM(B), which means that |B′| stays as close to constant as possible.

Figure 2 in Section 7 illustrates this difference on the example n = 15 and M = 20. But despite

these contrasting features, Theorem 1.4 will show that both kinds of extremal Blaschke products

have the same algebraic structure.

Our uniqueness result for extremal Blaschke product describes them in terms of hypergeometric

functions. In its statement we use the notation

(1.6) ν(B) =

{
M(B)− n, if B is of the first kind

m(B)− n, if B is of the second kind.

Equations (1.4)–(1.5) show that

(1.7)
n

ν(B) + 1
=

{
m(B), if B is of the first kind

M(B), if B is of the second kind.

As a consequence, we always have ν(B) > −1. The extremal products with ν(B) > 0 are of the

first kind, and those with −1 < ν(B) < 0 are of the second kind.

Theorem 1.4. Suppose B is an extremal Blaschke product of degree n. Let ν be as in (1.6). If

ν = 0, then B(z) = αzn for some unimodular constant α. If ν 6= 0, then there exist unimodular

constants α, β such that

(1.8) B(z) = α
p(βz)

q(βz)

where p is the hypergeometric polynomial

(1.9) p(z) = F (−n, ν + 2;−n− ν + 1; z)

(see Definition 3.1) and q is the conjugate-reciprocal polynomial of p, that is q(z) = znp(1/z̄).

Remark 1.5. The existence of extremal Blaschke products (Theorem 1.2) implies that the product

defined in (1.8) is indeed extremal. A more detailed description of the Blaschke product (1.8) is

provided by Theorem 4.4.

Remark 1.6. Since the polynomial (1.9) has real coefficients, one could write q(z) = znp(1/z) in

Theorem 1.4, but it is more natural to think of q as conjugate-reciprocal to p.
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Theorem 1.2 has a consequence for rational circle homeomorphisms and diffeomorphisms. Recall

from [10] that the mapping z 7→ B(z)/zn−1 is a homeomorphism of T if and only ifm(B) ≥ n−1, and

it is a diffeomorphism if and only if m(B) > n−1. Similarly for zn+1/B(z): it is a homeomorphism

iff M(B) ≤ n+ 1 and a diffeomorphism iff M(B) < n+ 1.

Corollary 1.7. If B is a Blaschke product of degree 2 and the restriction of z3/B(z) to T is a

homeomorphism, then B(z)/z is also a homeomorphism of T. Moreover, if z3/B(z) is a circle

diffeomorphism, then B(z)/z is a diffeomorphism.

Proof. From (1.2) with n = 2 we obtain m ≥ 2/(M − 1). Thus, M ≤ 3 implies m ≥ 1, and M < 3

implies m > 1. �

Theorem 1.2 also shows that for degrees n > 2, the inequality M(B) ≤ n + 1 does not imply

m(B) ≥ n − 1. Thus, for n > 2 there exist Blaschke products such that zn+1/B(z) is a circle

homeomorphism but B(z)/zn−1 is not.

The paper is structured as follows. The first part of Theorem 1.2 is proved in Section 2. After

introducing hypergeometric functions in Section 3 we establish a nonlinear relation between three

such functions (Lemma 3.4) which appears to be new. This relation unlocks the extremal properties

of hypergeometric Blaschke products in Section 4. We complete the proof of Theorem 1.2 in Section 5

and prove the uniqueness of extremal products (Theorem 1.4) in Section 6. Section 7 concerns the

zeros of extremal Blaschke products.

2. Preliminaries

We begin the proof of Theorem 1.2 with the easy part (i). It is based on the following lemma,

which is proved by considering the residues of a rational function at its simple poles.

Lemma 2.1. [3, Lemma 4.2] Let B be a Blaschke product of degree n ≥ 2 with B(0) = 0. Fix

λ ∈ T and let z1, . . . , zn ∈ T denote the n distinct solutions of B(z) = λ. Then

(2.1)
B(z)

z(B(z)− λ)
=

n∑

j=1

mj

z − zj

where
∑n

j=1mj = 1 and

(2.2)
1

mj
= |B′(zj)| =

zjB
′(zj)

λ
, j = 1, . . . , n.
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Proof of Theorem 1.2 (i). Let B be any Blaschke product of degree n ≥ 1. Apply Lemma 2.1 to

the product B̃(z) := zB(z), which satisfies |B̃′(z)| = |B′(z)| + 1 for all z ∈ T. The lemma shows

that for every λ ∈ T we have

(2.3)

n∑

j=0

1

|B′(zj)|+ 1
= 1

where z0, . . . , zn are solutions of the equation zB(z) = λ.

Using the inequality |B′(zj)| ≤M for j = 1, . . . , n, we obtain

1

|B′(z0)|+ 1
+

n

M + 1
≤ 1.

Hence

|B′(z0)| ≥
n

M − n+ 1

and since λ ∈ T was arbitrary, the left hand side of (1.2) follows.

To prove the right hand side of (1.2) we assumem > n−1 since the inequality is trivial otherwise.

Using |B′(zj)| ≥ m for j = 1, . . . , n, we obtain

1

|B′(z0)|+ 1
+

n

m+ 1
≥ 1.

Since λ was arbitrary, it follows that M ≤ n
m−n+1 , hence m ≤ n− 1 + n/M . �

Seeing that the second part of Theorem 1.2 is the converse of the part that was derived from

Lemma 2.1, it is natural to ask about the converse of this lemma. The converse is also a known

result: it is stated without a proof in [12, p. 994], and is proved for m1 = · · · = mn = 1/n in [4,

Lemma 13]. Since we could not find a proof of the general case in the literature, we give it here.

Lemma 2.2. (General form of [4, Lemma 13]) Given any distinct points z1, . . . , zn ∈ T and positive

numbers m1, . . . ,mn with
∑n

j=1mj = 1, there exists a Blaschke product B of degree n with B(0) = 0

such that (2.1) and (2.2) hold for some λ ∈ T.

Proof. Define

(2.4) p(z) =

n∑

j=1

mj

∏

k 6=j

(z − zk)

which is a monic polynomial of degree n− 1. Let q(z) = p(1/z̄) be its conjugate-reciprocal polyno-

mial. We claim that the Blaschke product B(z) = zp(z)/q(z) satisfies (2.1), and consequently (2.2).
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First, we need to check that B is indeed a Blaschke product, that is, all zeros of p are in D. The

definition of p shows p(zj) 6= 0. For any w /∈ D ∪ {zj} we have

Re
wp(w)∏n

k=1(w − zk)
=

n∑

j=1

mj Re
1

1− w−1zj
> 0

hence p(w) 6= 0.

The key step of the proof of (2.1) is the identity

(2.5) zp − λq =

n∏

j=1

(z − zj)

where λ ∈ T is defined by

(2.6) − λ =

n∏

j=1

(−zj).

Indeed, once (2.5) is proved, it can be combined with (2.4) to obtain

B(z)

z(B(z) − λ)
=

p

zp− λq
=

n∑

j=1

mj

z − zj

which is (2.1).

In order to prove (2.5) it suffices to check that it holds at n + 1 points 0, z1, . . . , zn since both

sides of (2.5) are polynomials of degree n. At z = 0 both sides of (2.5) are equal by virtue of (2.6).

At z = zj the right hand side of (2.5) vanishes while on the left we have

p(zj) = mj

∏

k 6=j

(zk − zk) and q(zj) = zn−1
j p(zj).

Using the identity
zj − zk
zj − zk

=
zj − zk

z−1
j − z−1

k

= −zjzk

we calculate
p(zj)

q(zj)
=

mj

∏
k 6=j(zj − zk)

mjz
n−1
j

∏
k 6=j (zj − zk)

=
1

zn−1
j

∏

k 6=j

(−zjzk) =
λ

zj
.

Thus, zjp(zj)−λq(zj) = 0 for j = 1, . . . , n. This completes the proof of (2.5) and of the lemma. �

However, an attempt to use Lemma 2.2 to prove the second part of Theorem 1.2 is unlikely

to succeed. Indeed, given n,M,m as in Theorem 1.2 (ii), one can use Lemma 2.2 to construct a

Blaschke product B such that |B′| attains the values M and m, and only these values, on some set

of the form {z ∈ T : zB(z) = λ}. But this only tells us that M(B) ≥ M and m(B) ≤ m, not that

M(B) =M and m(B) = m. Our proof of Theorem 1.2 (ii) is based on a completely different idea.
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It involves constructing Blaschke products from hypergeometric functions, which are the subject of

next section.

3. Hypergeometric functions

Definition 3.1. The hypergeometric function F is defined by the power series

(3.1) F (a, b; c, z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

where subscripts (the Pochhammer symbol) are understood as rising factorials: (a)k = a(a +

1) · · · (a+ k − 1). In general, (3.1) is well defined if 1− c /∈ N and |z| < 1. But in the special case

when a = −n for some n ∈ N, the series terminates at the index k = n, becoming a hypergeometric

polynomial. In this case we can allow any z ∈ C and any value of c in the set C\{0,−1,−2, . . . , 1−n}.
The latter holds because (c)k 6= 0 when k = 0, . . . , n.

The following is a known result (see [6, Theorem 1] and [14]) but we include a short proof.

Proposition 3.2. Fix n ∈ N and a real number λ > −1/2 such that λ 6= 0. All zeros of the

polynomial h(z) = F (−n, λ;−n+ 1− λ; z) are simple and lie on the unit circle T.

Proof. The polynomial h is related to the Gegenbauer polynomial C
(λ)
n by the formula

(3.2) C(λ)
n (cos θ) = einθ

(λ)n
n!

h(e−2iθ), 0 ≤ θ ≤ π,

see [1, 22.3.12] or [5, 18.5.11]. The general theory of orthogonal polynomials [2, Theorem 5.4.1]

shows that C
(λ)
n has n simple zeros on (−1, 1). The relation (3.2) implies h has n simple zeros on

T, as claimed. �

The condition λ > −1/2 in Proposition 3.2 is sharp. Driver and Duren [7] present a detailed

picture of the roots of h when λ < −1/2, in which case they are no longer contained in T.

Lemma 3.3. Fix n ∈ N and a real nonzero number ν > −1. All zeros of the hypergeometric

polynomial p(z) = F (−n, ν + 2;−n+ 1− ν; z) lie in the open unit disk D.

Proof. We distinguish two cases. If ν > −1/2, Lemma 3.2 implies that all zeros of the polynomial

q(z) = F (−n − 2, ν;−n − 1 − ν; z) are simple and lie on the unit circle T. The Gauss-Lucas

theorem [15, §2.1.6] implies that every derivative of p has all its zeros in D. The derivative formula

for hypergeometric functions [2, (2.5.1)] yields

q′′(z) =
(−n− 2)2(ν)2
(−n− 1− ν)2

p(z)
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proving the claim in this case.

In the case −1 < ν < 0 we use a different approach, based on the coefficients of p:

p(z) =

n∑

k=0

(−n)k(ν + 2)k
(−n+ 1− ν)k

zk

k!
=:

n∑

k=0

akz
k.

When 0 ≤ k ≤ n− 1 the coefficient ak is positive because both (−n)k and (−n+ 1− ν)k have the

same sign as (−1)k. However, an = − (ν+2)n
(−ν)n

< 0. By the Chu-Vandermonde identity [2, Corollary

2.2.3]

(3.3)
n∑

k=0

ak = p(1) =
(−2ν − n− 1)n
(−n+ 1− ν)n

=
(2ν + 2)n

(ν)n
< 0.

where the last inequality follows from 2ν + 2 > 0 and −1 < ν < 0. Therefore, |an| >
∑n−1

k=0 |ak|,
which by Rouché’s theorem implies that p has all zeros in D. �

The main result of this section is a nonlinear relation between several hypergeometric functions

which provides a concise formula for the Wronskian determinant of two such functions.

Lemma 3.4. Let a, b, c ∈ C be such that c = a− b+ 1. If a is a negative integer, we assume that

c /∈ {a, a + 1, . . . , 0, 1}. Otherwise, assume 2 − c /∈ N. These conditions ensure that the following

hypergeometric functions can be defined according to Definition 3.1:

f(z) = F (a, b + 1; c + 1; z)

g(z) = F (a, b − 1; c − 1; z)

h(z) = F (a, b; c; z)

The following identity holds for all z ∈ C when a is a negative integer, and for z ∈ D otherwise.

(3.4) z(fg′ − f ′g) = c(fg − h2)

Our proof of Lemma 3.4 involves two of the standard linear relations between contiguous hyper-

geometric functions ([2, §2.5] or [5, §15.5]). The first is stated in [5, (15.5.15)] as

(3.5) (c− a− 1)F (a, b; c; z) + aF (a+ 1, b; c; z) − (c− 1)F (a, b; c − 1; z) = 0

and the second is [5, (15.5.16)]

(3.6) c(1− z)F (a, b; c; z) − cF (a− 1, b; c; z) + (c− b)zF (a, b; c + 1; z) = 0.

Two related formulas involve the derivative of F : they appear as (2.5.6) and (2.5.7) in [2].

(3.7) z
d

dz
F (a, b; c; z) = b

(
F (a, b+ 1; c; z) − F (a, b; c; z))
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(3.8) z
d

dz
F (a, b; c; z) = (c− 1)

(
F (a, b; c − 1; z) − F (a, b; c; z)

)

Proof of Lemma 3.4. Introduce two more hypergeometric functions:

f̃(z) = F (a, b+ 1; c; z);

g̃(z) = F (a, b; c − 1; z).

Interchanging the symmetric parameters a and b in (3.5), we find that

(3.9) (c− 1− b)h+ bf̃ − (c− 1)g̃ = 0.

If we use (3.6) in a similar way, replacing c by c− 1, the result is

(3.10) (c− 1)(1 − z)g̃ − (c− 1)g + (c− 1− a)zh = 0.

Another consequence of (3.6) is

(3.11) c(1 − z)f̃ − ch+ (c− a)zf = 0.

Multiplying (3.9) by (1− z) and using (3.10) and (3.11) to eliminate f̃ and g̃, we obtain

(3.12) (c− 1)h+ (b− a)zh− c− a

c
bzf − (c− 1)g = 0.

Thanks to the assumption c− 1 = a− b, (3.12) simplifies to

(3.13) g = (1− z)h+
b(b− 1)

c(c− 1)
zf.

Using (3.13) to eliminate g, we find that

(3.14) z(fg′ − f ′g)− cfg = (cz − c− z)fh− b(b− 1)

c
zf2 − z(1 − z)f ′h+ z(1 − z)fh′.

The derivative formulas (3.7)–(3.8) allow us to eliminate derivatives from (3.14) by using the iden-

tities zh′ = b(f̃ − h) and zf ′ = c(f̃ − f). This leads to

(3.15) z(fg′ − f ′g)− cfg = (bz − b− z)fh− b(b− 1)

c
zf2 + (1− z)f̃(bf − ch).

Finally, we use (3.11) to eliminate f̃ from (3.15):

(1− z)f̃(bf − ch) =

(
h− c− a

c
zf

)
(bf − ch)

= bfh− ch2 − c− a

c
bzf2 + (c− a)zfh.

(3.16)

Plugging (3.16) into (3.15) and using the relation c− a = 1− b, we arrive at

z(fg′ − f ′g)− cfg = −ch2

which is the desired identity (3.4). �
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4. Hypergeometric Blaschke products

Definition 4.1. A hypergeometric Blaschke product is a rational function of the form B(z) =

p(z)/q(z) where p(z) = F (−n, b; c; z) is a hypergeometric polynomial with all zeros contained

in D, and q(z) = znp(1/z̄) is its conjugate-reciprocal polynomial. We use the notation B(z) =

B(−n, b; c; z) for such products.

Lemma 4.2. A hypergeometric Blaschke product can be written as

(4.1) B(−n, b; c; z) = (−1)n
(c)n
(b)n

F (−n, b; c; z)
F (−n, 1− c− n; 1− b− n; z)

provided that the parameters b, c are real.

Proof. Since the coefficients of the numerator p of B are real, its denominator is the reciprocal

polynomial q(z) = znp(1/z). Applying a fractional linear transformation of the variable in F ,

see [5, (15.8.6)], we obtain

(4.2) znF (−n, b; c; 1/z) = (−1)n
(b)n
(c)n

F (−n, 1− c− n; 1− b− n; z)

which proves (4.1). �

For a general finite Blaschke product B, the boundary values of |B′| can be expressed as a

rational function and also as a sum of several instances of the Poisson kernel

(4.3) P (a, z) =
1− |a|2
|z − a| , a ∈ D, z ∈ T.

Lemma 4.3. ([3, Lemma 3.4], [8, Corollary 3.4.9]) For any finite Blaschke product B and any

z ∈ T we have

(4.4) |B′(z)| = zB′(z)

B(z)
=

n∑

k=1

P (ak, z)

where a1, . . . , an are the zeros of B.

Theorem 4.4. Suppose n ∈ N and ν > −1, ν 6= 0. The hypergeometric Blaschke product B(z) :=

B(−n, ν + 2;−n− ν + 1; z) has the following properties:

(4.5) M(B) = n+ ν, m(B) = n/(ν + 1) if ν > 0,

(4.6) M(B) = n/(ν + 1), m(B) = n+ ν if − 1 < ν < 0.

Both extremes are attained within the set E := {z ∈ T : zB(z) = 1}. Specifically, |B′(z)| = n + ν

holds on E \ {1} and |B′(z)| = n/(ν + 1) holds when z = 1.
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Proof. Let f(z) = F (−n, ν+2;−n−ν+1; z) and g(z) = F (−n, ν;−n−ν−1; z). Lemma 4.2 shows

that

(4.7) B(z) = κ
f(z)

g(z)
, where κ = (−1)n

(−n− ν + 1)n
(ν + 2)n

=
ν(ν + 1)

(n+ ν)(n + ν + 1)
.

Note that B is indeed a Blaschke product because all zeros of f are contained in D by Lemma 3.3.

For z ∈ T, Lemma 4.3 yields

(4.8) |B′(z)| = zB′(z)

B(z)
=
z(f ′g − fg′)

fg

where the denominator can be rewritten as

(4.9) f(z)g(z) = κznf(z)f(1/z̄) = κzn|f(z)|2.

From (4.8) it follows that

(4.10) n+ ν − zB′(z)

B(z)
=

(n+ ν)fg − z(f ′g − fg′)

fg
.

Using Lemma 3.4 with a = −n, b = ν + 1, and c = a− b+ 1 = −n− ν, we obtain

(4.11) (n+ ν)fg − z(f ′g − fg′) = (n+ ν)h2

where h(z) = F (−n, b, c; z). Another useful identity is (3.13) from the proof of Lemma 3.4, which

simplifies to

(4.12) g = (1− z)h + κzf.

Because of (4.12) we have

(4.13) E = {z ∈ T : κzf(z) = g(z)} = {z ∈ T : (1− z)h(z) = 0}.

Thus, the set where zB(z) = 1 consists of the zeros of polynomial h with an extra point 1.

By Lemma 3.2, all zeros of h are on the unit circle T. In other words, h has the same zeros as its

conjugate-reciprocal polynomial, which implies h(z) = αznh(1/z̄) for some unimodular constant α.

The hypergeometric form of h shows that its coefficients are positive, thus h(z) = znh(1/z̄). This

leads to the identity

(4.14)
h(z)2

zn
=
znh(1/z̄)h(z)

zn
= |h(z)|2, z ∈ T.
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From (4.9), (4.10), (4.11), and (4.14) we conclude that

n+ ν − zB′(z)

B(z)
=

(n+ ν)h(z)2

f(z)g(z)

= κ
(n + ν)h(z)2

zn|p(z)|2

=
ν(ν + 1)

n+ ν + 1

|h(z)|2
|f(z)|2 .

(4.15)

The identity (4.15) shows that for z ∈ T,

(4.16) ν(n+ ν − |B′(z)|) ≥ 0

with equality attained precisely at the zeros of h. The relation (2.3) with λ = 1 implies that

1 =
∑

z∈E

1

|B′(z)|+ 1
=

n

n+ ν
+

1

|B′(1)| + 1

from where it follows that |B′(1)| = n/(ν + 1).

To complete the proof of (4.5)–(4.6), we consider two cases. If ν > 0, then M(B) = n + ν

by (4.16). The left-hand side of (1.2) implies that m(B) ≥ n/(ν +1). Since |B′(1)| = n/(ν +1), it

follows that m(B) = n/(ν + 1).

If −1 < ν < 0, then m(B) = n + ν by (4.16). The right-hand side of (1.2) implies that

M(B) ≤ n/(ν + 1). Since |B′(1)| = n/(ν + 1), it follows that M(B) = n/(ν + 1). �

5. Blaschke products with prescribed extrema of the derivative

In this section we prove Theorem 1.2 (ii), that is, the existence of Blaschke products B with

prescribed extrema of |B′| on the unit circle. The proof requires a lemma.

Lemma 5.1. Suppose a1, . . . , an ∈ D and that the number A := max{|ak| : k = 1, . . . , n} is positive.

For 0 < λ < 1/A consider the Blaschke product

Bλ(z) =
n∏

k=1

z − λak
1− λakz

Then M(Bλ) is strictly increasing with λ, and m(Bλ) is strictly decreasing with λ.

Proof. Recall from (4.4) that for z ∈ T,

(5.1) |B′
λ(z)| =

n∑

k=1

P (λak, z).



EXTREME VALUES OF THE DERIVATIVE OF BLASCHKE PRODUCTS 13

For any δ ∈ (0, 1), the semigroup property of the Poisson kernel implies

P (δλak, z) =

∫

T

P (λak, ζ)P (δ, ζ̄z)
|dζ|
2π

.

Summation over k yields

(5.2) |B′
δλ(z)| =

∫

T

|B′
λ(ζ)|P (δ, ζ̄z)

|dζ|
2π

.

Since |B′
λ(ζ)| is a nonconstant continuous function on T, the weighted average on the right hand

side of (5.2) is strictly between m(Bλ) and M(Bλ). It follows that both m(Bδλ) and M(Bδλ) are

strictly between m(Bλ) and M(Bλ), which proves both claims of monotonicity. �

Proof of Theorem 1.2 (ii). Suppose n,m,M satisfy (1.2) and (1.3). There are four cases to con-

sider.

Case 1: M = n. Then (1.2) implies m = n. The Blaschke product B1(z) = zn satisfies

M(B1) = m(B1) = n.

Case 2: M > n and m = n/(M−n+1), so that equality holds on the left side of (1.2). Applying

Theorem 4.4 with ν =M−n, we find a hypergeometric Blaschke product B2 for whichM(B2) =M

and m(B2) = n/(M − n+ 1).

Case 3: M > n and m = n−1+n/M , so that equality holds on the right side of (1.2). Applying

Theorem 4.4 with ν = n/M − 1 = m− n, we find a hypergeometric Blaschke product B3 for which

M(B3) =M and m(B3) = n− 1 + n/M .

Case 4: M > n and strict inequalities hold on both sides of (1.2). We handle this case by

interpolating between the products B2 and B3 from the preceding cases. Recall that M(B2) =

M(B3) =M and m(B2) < m < m(B3). Let a1, . . . , an be the zeros of B2, and let b1, . . . , bn be the

zeros of B3. Note that ak, bk 6= 0 since a hypergeometric function does not vanish at z = 0.

For k = 1, . . . , n choose some continuous curve γk : [0, 1] → D \ {0} such that γk(0) = ak and

γk(1) = bk. Define Λ(t) = 1/maxk |γk(t)|. For 0 < λ < Λ(t) let Bt,λ be a Blaschke product with

zeros λγk(t), k = 1, . . . , n.

For each fixed t, the function λ 7→ M(Bt,λ) is continuous and strictly increasing by virtue of

Lemma 5.1. The relation (5.1) shows that M(Bt,λ) → n as λ → 0+, and M(Bt,λ) → ∞ as

λ → Λ(t)−, when at least one of the zeros approaches the boundary of D. Therefore, there exists

a unique value λ(t) such that M(Bt,λ(t)) = M . We claim that the function t 7→ λ(t) is continuous

on [0, 1].
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Fix t ∈ [0, 1] and ǫ > 0. Choose some positive numbers α, β so that

max(λ(t)− ǫ, 0) < α < λ(t) < β < min(λ(t) + ǫ,Λ(t))

By the strict monotonicity with respect to λ,

(5.3) M(Bt,α) < M < M(Bt,β)

The continuity of the norm with respect to t implies the existence of δ > 0 such that if s ∈ [0, 1]

and |s− t| < δ, both inequalities (5.3) still hold with t replaced by s. Therefore, for any such s we

have α < λ(s) < β, which implies |λ(s)− λ(t)| < ǫ. This proves the continuity of λ with respect to

t.

Since the function t 7→ m(Bt,λ(t)) is continuous, the intermediate value theorem provides t ∈ (0, 1)

such that m(Bt,λ(t)) = m, completing the proof of Theorem 1.2. �

6. Uniqueness of extremal Blaschke products

In this section we prove Theorem 1.4 concerning the uniqueness of Blaschke products B with

extreme values of M(B) = supT |B′| and m(B) = infT |B′|, as introduced in Definition 1.3.

Lemma 6.1. Suppose B is an extremal Blaschke product of degree n. Let ν be as in (1.6). Then

there exists λ ∈ T and distinct points z0, z1, . . . , zn ∈ T with the following properties:

(a) zkB(zk) = λ for k = 0, . . . , n;

(b) |B′(z0)| = n/(ν + 1);

(c) |B′(zk)| = n+ ν for k = 1, . . . , n.

Proof. Case 1: ν ≥ 0. Then M(B) = n+ ν and m(B) = n/(ν + 1), according to (1.7). Therefore,

there exists z0 ∈ T such that |B′(z0)| = n/(ν + 1). Let λ = z0B(z0) and let z1, . . . , zn be other

solutions of the equation zB(z) = λ. The identity (2.3) implies

(6.1)
n∑

k=1

1

|B′(zk)|+ 1
= 1− 1

n/(ν + 1) + 1
=

n

n+ ν + 1

Since |B′| ≤ n + ν on T, in order for (6.1) to hold, it is necessary to have |B′(zk)| = n + ν for

k = 1, . . . , n. This concludes the proof of Case 1.

Case 2: −1 < ν < 0, which implies M(B) = n/(ν + 1) and m(B) = n + ν according to (1.7).

Pick z0 ∈ T so that |B′(z0)| = M(B) = n/(ν + 1). Then define λ, z1, . . . , zn as in Case 1. The

relation (6.1) still holds. Since |B′| ≥ n+ν on T, it follows that |B′(zk)| = n+ν for k = 1, . . . , n. �
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Proof of Theorem 1.4. Let B be an extremal Blaschke product of degree n, and let ν be as in (1.6).

If ν = 0, then M(B) = m(B) = n, which means |B′| ≡ n on T. Hence B(z) = αzn for some α ∈ T.

From now on, assume ν 6= 0.

By replacing B with αB(βz) for appropriate α, β ∈ T, we can make sure that the conclusion of

Lemma 6.1 holds with z0 = 1 and λ = 1. In particular, B(1) = 1.

Let B̃(z) = zB(z) and E = {z0, . . . , zn} = B̃−1(1). We can write B as B(z) = p(z)/q(z) where

p is a polynomial of degree n (not necessarily monic) with all zeros in D, and q is its conjugate-

reciprocal polynomial. We will usually omit the argument z of p and q and other polynomials that

appear below.

For z ∈ T we have

(6.2) n+ ν − |B′| = n+ ν − zB′

B
= n+ ν − z

p′q − q′p

pq
=

ψ

pq

where

(6.3) ψ = (n+ ν)pq − z(p′q − q′p)

is a polynomial of degree 2n. Because of (6.2), the rational function ψ/(pq) maps T onto a real

interval with 0 as an endpoint. Since it attains the value 0 at the points z1, . . . , zn, these points

must be zeros of even order for ψ. Considering that degψ = 2n, we conclude that ψ = C1r
2 where

C1 is a constant and r(z) =
∏n

k=1(z − zk).

Since B̃ maps E to 1, we have zp = q on the set E . Plugging this relation into (6.3), we find

ψ(z) = (n+ ν)zp2 − z2pp′ + zpq′ = zp[(n+ ν)p− zp′ + q′], z ∈ E .

Since zp does not vanish on T, the factor (n+ν)p−zp′+q′ vanishes at z1, . . . , zn. But it has degree
n, and therefore

(6.4) (n+ ν)p− zp′ + q′ = C2r(z)

where C2 is a constant.

Recalling that E = {1, z1, . . . , zn} is the zero set of zp − q and using (6.4), we arrive at

(6.5) zp− q = C3(z − 1)[(n + ν)p− zp′ + q′]

where C3 is a constant. Comparison of the leading coefficients in (6.5) leads to C3 = 1/ν. Hence

(6.6) ν(zp − q) = (z − 1)[(n + ν)p− zp′ + q′].

The identity (6.6) provides a linear differential equation relating the polynomials p and q. An-

other such relation can be derived as follows.
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Since the points z1, . . . , zn are double roots of ψ, they are also roots of its derivative

(6.7) ψ′ = (n+ ν − 1)p′q + (n+ ν + 1)pq′ − zp′′q + zpq′′.

Since q = zp at z1, . . . , zn, plugging this relation in (6.7) shows that

(6.8) ψ′(z) = p[(n+ ν − 1)zp′ + (n+ ν + 1)q′ − z2p′′ + zq′′], z ∈ {z1, . . . , zn}.

Since p does not vanish on T, the second factor on the right hand side of (6.8), which is

(6.9) (n+ ν − 1)zp′ + (n+ ν + 1)q′ − z2p′′ + zq′′

must vanish at z1, . . . , zn. But (6.9) is a polynomial of degree n and therefore must be a constant

multiple of r. The leading coefficient of (6.9) is nνcn where cn is the leading coefficient of p. The

leading coefficient of the left hand side of (6.4) is νcn. Thus,

(6.10) (n+ ν − 1)zp′ + (n + ν + 1)q′ − z2p′′ + zq′′ = n[(n+ ν)p− zp′ + q′].

Our next step is to combine (6.6) and (6.10), eliminating q and thus obtaining a differential

equation for p. Specifically, we will show that p satisfies the hypergeometric differential equation

(6.11) z(1− z)p′′ − (n+ ν − 1)p′ − (ν − n+ 3)zp′ + n(ν + 2)p = 0.

Expanding (6.6) as

(6.12) z(1 − z)p′ + nzp− (n+ ν)p+ νq + (z − 1)q′ = 0

and taking derivative on both sides, we get

(6.13) z(1 − z)p′′ − (n + ν − 1)p′ + (n− 2)zp′ + np+ (ν + 1)q′ + (z − 1)q′′ = 0.

The system of two second-order differential equations (6.10) and (6.13) can be written as

(ν + 1)q′ + zq′′ = n(n+ ν)p− (2n + ν − 1)zp′ + z2p′′ =: Φ(6.14)

(ν + 1)q′ + (z − 1)q′′ = −np+ (n+ ν − 1)p′ − (n− 2)zp′ − z(1− z)p′′ =: Ψ(6.15)

Subtracting (6.15) from (6.14) shows that q′′ = Φ−Ψ, and then (6.14) yields (ν+1)q′ = (1−z)Φ+zΨ.

Differentiating the latter, we obtain

(1− z)Φ′ + zΨ′ − Φ+Ψ = (ν + 1)q′′ = (ν + 1)(Φ −Ψ).

Hence

(6.16) (1− z)Φ′ + zΨ′ + (ν + 2)(Ψ − Φ) = 0.
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Recalling the definitions of Φ and Ψ (6.14)–(6.15), we see that (6.16) is a linear differential equation

for p. When simplified, it becomes the hypergeometric equation (6.11).

At this point one could appeal to the classification of solutions of the hypergeometric equation [2,

§2.3] to conclude that p must be a constant multiple of F (−n, ν + 2;−n− ν + 1; z). But with this

approach, the case when −n − ν + 1 is a negative integer has to be treated separately. To avoid

this complication, we work directly with the coefficients of polynomial p(z) =
∑n

k=0 ckz
k. Plugging

this sum into (6.11) and equating the coefficient of zk, 0 ≤ k ≤ n− 1, to zero, we find that

k(k + 1)ck+1 − k(k − 1)ck − (n+ ν − 1)(k + 1)ck+1 − (ν − n+ 3)kck + n(ν + 2)ck = 0

hence

(6.17) ck+1 =
(k − n)(k + ν + 2)

(k + 1)(k − n− ν + 1)
ck.

The denominator in (6.17) is never zero because ν ∈ (−1, 0)∪(0,∞) and k ≤ n−1. Comparing (6.17)

to the definition of hypergeometric function (3.1), we see that

p(z) = c0F (−n, ν + 2;−n− ν + 1; z).

The normalization B(1) = 1 implies that c0/c0 = 1, hence c0 is real. Dividing p by the real constant

c0 does not change the Blaschke product B = p/q because the conjugate-reciprocal polynomial q

gets divided by the same constant. Thus, B has the form claimed in Theorem 1.4. �

7. Zeros of extremal Blaschke products

Although Theorem 1.4 provides an explicit formula for extremal Blaschke products, more insight

can be gained from examples which unpack the definition of the hypergeometric function F and

display the structure of zeros and the behavior of |B′| on the unit circle.

Example 7.1. Recall from Corollary 1.7 that for Blaschke products B with degB = 2, the in-

equality M(B) ≤ 3 implies m(B) ≥ 1. By Theorem 1.4, there is a unique (up to rotation) Blaschke

product with degB = 2, M(B) = 3, and m(B) = 1, namely

B(z) =
6z2 + 3z + 1

z2 + 3z + 6
.

The zeros of B are (−3±i
√
15)/12, which illustrates the fact that while extremal Blaschke products

have relatively simple coefficients (positive rational numbers) their zeros do not have a simple form.

To understand the role of the location of zeros, recall that the boundary values of |B′| are given

by the Poisson kernel sum (4.4) involving the zeros of B. In order to minimize m(B) for a fixed



18 LEONID V. KOVALEV AND XUERUI YANG

value of M(B), it is logical to distribute the zeros so they have a large gap, where small values of

|B′| are found, but are uniformly spaced otherwise, avoiding very large values of |B′|.
Extremal products of the second kind, which maximize m(B) for a given M(B), have a less

intuitive placement of zeros. One might think that the best way to keep the sum (4.4) nearly

constant around the unit circle is to distribute the zeros a1, . . . , an uniformly on a circle concentric

to T. But this is not so.

Example 7.2. Let B1 be an extremal Blaschke product of the first kind with n = 15 and ν = 5,

which means M(B1) = 20 and m(B1) = 2.5. Figure 1 (left) shows the zeros of B1, with the unit

circle for reference.

Let B2 be an extremal Blaschke product of the second kind with n = 15 and ν = −1/4, which

means M(B2) = 20 and m(B2) = 14.75. The zeros of B2 are shown on the right in Figure 1. The

principal difference is that B2 has a positive zero.

Figure 1. Zeros of the extremal Blaschke products of Example 7.2

Remark 7.3. For −1 < ν < 0 the polynomial p(z) = F (−n, ν + 2;−n − ν + 1; z), which is the

numerator of an extremal Blaschke products of the second kind, has a real root in the interval

(0, 1). Indeed, p(0) = 1 and p(1) < 0 by virtue of (3.3).

The behavior of |B′(eit)|, −π ≤ t ≤ π, is shown on Figure 2 for both products introduced in

Example 7.2. Both plots share the vertical axis, demonstrating that M(B1) = M(B2) = 20 while

the minimum values are quite different. In both cases the mean value of |B′| on T is equal to 15,

the degree of the product.
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Figure 2. Derivative of the extremal Blaschke products of Example 7.2

The fact that the mean value of |B′| is constrained by the degree of B explains why a symmetric

placement of zeros fails to maximize m(B) for a given M(B). For a Blaschke product B with

symmetric zeros, |B′| attains its maximum n times, and these multiple maxima must be offset by

smaller values of |B′| elsewhere. Indeed, an easy computation shows that a product with symmetric

zeros,

B(z) =
zn + an

1 + anzn
, 0 < a < 1,

has

|B′(z)| = n
1− a2n

|zn + an| , M(B) = n
1 + an

1− an
, m(B) = n

1− an

1 + an
,

and therefore m(B) = n2/M(B), which is not extremal in the sense of Definition 1.3.
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