NEAR-ISOMETRIC DUALITY OF HARDY NORMS WITH APPLICATIONS TO HARMONIC MAPPINGS

LEONID V. KOVALEV AND XUERUI YANG

Abstract

Hardy spaces in the complex plane and in higher dimensions have natural finite-dimensional subspaces formed by polynomials or by linear maps. We use the restriction of Hardy norms to such subspaces to describe the set of possible derivatives of harmonic self-maps of a ball, providing a version of the Schwarz lemma for harmonic maps. These restricted Hardy norms display unexpected near-isometric duality between the exponents 1 and 4, which we use to give an explicit form of harmonic Schwarz lemma.

1. Introduction

This paper connects two seemingly distant subjects: the geometry of Hardy norms on finite-dimensional spaces and the gradient of a harmonic map of the unit ball. Specifically, writing H_{*}^{1} for the dual of the Hardy norm H^{1} on complex-linear functions (defined in ¢821), we obtain the following description of the possible gradients of harmonic maps of the unit disk \mathbb{D}.

Theorem 1.1. A vector $(\alpha, \beta) \in \mathbb{C}^{2}$ is the Wirtinger derivative at 0 of some harmonic map $f: \mathbb{D} \rightarrow \mathbb{D}$ if and only if $\|(\alpha, \beta)\|_{H_{*}^{1}} \leq 1$.

Theorem 1.1 can be compared to the behavior of holomorphic maps $f: \mathbb{D} \rightarrow \mathbb{D}$ for which the set of all possible values of $f^{\prime}(0)$ is simply $\overline{\mathbb{D}}$. The appearance of H_{*}^{1} norm here leads one to look for a concrete description of this norm. It is well known that the duality of holomorphic Hardy spaces H^{p} is not isometric, and in particular the dual of H^{1} norm is quite different from H^{∞} norm even on finite dimensional subspaces (see (3.4)). However, it has a striking similarity to H^{4} norm.

Theorem 1.2. For all $\xi \in \mathbb{C}^{2} \backslash\{(0,0)\}, 1 \leq\|\xi\|_{H_{*}^{1}} /\|\xi\|_{H^{4}} \leq 1.01$.
Since the H^{4} norm can be expressed as $\left\|\left(\xi_{1}, \xi_{2}\right)\right\|_{4}=\left(\left|\xi_{1}\right|^{4}+4\left|\xi_{1} \xi_{2}\right|^{2}+\left|\xi_{4}\right|^{4}\right)^{1 / 4}$, Theorem 1.2 supplements Theorem 1.1 with an explicit estimate.

[^0]In general, Hardy norms are merely quasinorms when $p<1$, as the triangle inequality fails. However, their restrictions to the subspaces of degree 1 complex polynomials or of 2×2 real matrices are actual norms (Theorem 2.1 and Corollary 5.2). We do not know if this property holds for $n \times n$ matrices with $n>2$.

The paper is organized as follows. Section 2 introduces Hardy norms on polynomials. In Section 3 we prove Theorem [1.2. Section 4 concerns the Schwarz lemma for planar harmonic maps, Theorem 1.1. In section 5 we consider higher dimensional analogues of these results.

2. HARDY NORMS ON POLYNOMIALS

For a polynomial $f \in \mathbb{C}[z]$, the Hardy space $\left(H^{p}\right)$ quasinorm is defined by

$$
\|f\|_{H^{p}}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|^{p} d t\right)^{1 / p}
$$

where $0<p<\infty$. There are two limiting cases: $p \rightarrow \infty$ yields the supremum norm

$$
\|f\|_{H^{\infty}}=\max _{t \in \mathbb{R}}\left|f\left(e^{i t}\right)\right|
$$

and the limit $p \rightarrow 0$ yields the Mahler measure of f :

$$
\|f\|_{H^{0}}=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(e^{i t}\right)\right| d t\right)
$$

An overview of the properties of these quasinorms can be found in [12, Chapter 13] and in [11]. In general they satisfy the definition of a norm only when $p \geq 1$.

The Hardy quasinorms on vector spaces \mathbb{C}^{n} are defined by

$$
\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{H^{p}}=\|f\|_{H^{p}}, \quad f(z)=\sum_{k=1}^{n} a_{k} z^{k-1}
$$

We will focus on the case $n=2$, which corresponds to the H^{p} quasinorm of degree 1 polynomials $a_{1}+a_{2} z$. These quantities appear as multiplicative constants in sharp inequalities for polynomials of general degree: see Theorems 13.2 .12 and 14.6.5 in [12], or Theorem 5 in [11]. In general, H^{p} quasinorms cannot be expressed in elementary functions even on \mathbb{C}^{2}. Notable exceptions include

$$
\begin{align*}
\left\|\left(a_{1}, a_{2}\right)\right\|_{H^{0}} & =\max \left(\left|a_{1}\right|,\left|a_{2}\right|\right) \\
\left\|\left(a_{1}, a_{2}\right)\right\|_{H^{2}} & =\left(\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}\right)^{1 / 2} \\
\left\|\left(a_{1}, a_{2}\right)\right\|_{H^{4}} & =\left(\left|a_{1}\right|^{4}+4\left|a_{1}\right|^{2}\left|a_{2}\right|^{2}+\left|a_{2}\right|^{4}\right)^{1 / 4} \tag{2.1}\\
\left\|\left(a_{1}, a_{2}\right)\right\|_{H^{\infty}} & =\left|a_{1}\right|+\left|a_{2}\right|
\end{align*}
$$

Another easy evaluation is

$$
\begin{equation*}
\|(1,1)\|_{H^{1}}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i t}\right| d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} 2|\cos (t / 2)| d t=\frac{4}{\pi} \tag{2.2}
\end{equation*}
$$

However, the general formula for the H^{1} norm on \mathbb{C}^{2} involves the complete elliptic integral of the second kind E. Indeed, writing $k=\left|a_{2} / a_{1}\right|$, we have

$$
\begin{align*}
& \left\|\left(a_{1}, a_{2}\right)\right\|_{H^{1}}=\left|a_{1}\right|\|(1, k)\|_{H^{1}}=\frac{\left|a_{1}\right|}{2 \pi} \int_{0}^{2 \pi}\left|1+k e^{2 i t}\right| d t \\
& \quad=\left|a_{1}\right| \frac{2(k+1)}{\pi} \int_{0}^{\pi / 2} \sqrt{1-\left(\frac{2 \sqrt{k}}{k+1}\right)^{2} \sin ^{2} t} d t \tag{2.3}\\
& \quad=\left|a_{1}\right| \frac{2(k+1)}{\pi} E\left(\frac{2 \sqrt{k}}{k+1}\right)
\end{align*}
$$

Perhaps surprisingly, the Hardy quasinorm on \mathbb{C}^{2} is a norm (i.e., it satisfies the triangle inequality) even when $p<1$.

Theorem 2.1. The Hardy quasinorm on \mathbb{C}^{2} is a norm for all $0 \leq p \leq \infty$. In addition, it has the symmetry properties

$$
\begin{equation*}
\left\|\left(a_{1}, a_{2}\right)\right\|_{H^{p}}=\left\|\left(a_{2}, a_{1}\right)\right\|_{H^{p}}=\left\|\left(\left|a_{1}\right|,\left|a_{2}\right|\right)\right\|_{H^{p}} \tag{2.4}
\end{equation*}
$$

Proof. For $p=0, \infty$ all these statements follow from (2.1), so we assume $0<p<\infty$. The identities

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|a_{1}+a_{2} e^{i t}\right|^{p} d t=\int_{0}^{2 \pi}\left|a_{1} e^{-i t}+a_{2}\right|^{p} d t=\int_{0}^{2 \pi}\left|a_{2}+a_{1} e^{i t}\right|^{p} d t \tag{2.5}
\end{equation*}
$$

imply the first part of (2.4). Furthermore, the first integral in (2.5) is independent of the argument of a_{2} while the last integral is independent of the argument of a_{1}. This completes the proof of (2.4).

It remains to prove the triangle inequality in the case $0<p<1$. To this end, consider the following function of $\lambda \in \mathbb{R}$.

$$
\begin{equation*}
G(\lambda):=\|(1, \lambda)\|_{H^{p}}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+\lambda e^{i t}\right|^{p} d t\right)^{1 / p} \tag{2.6}
\end{equation*}
$$

We claim that G is convex on \mathbb{R}. If $|\lambda|<1$, the binomial series

$$
\left(1+\lambda e^{i t}\right)^{p / 2}=\sum_{n=0}^{\infty}\binom{p / 2}{n} \lambda^{n} e^{n i t}
$$

together with Parseval's identity imply

$$
\begin{equation*}
G(\lambda)=\left(\sum_{n=0}^{\infty}\binom{p / 2}{n}^{2} \lambda^{2 n}\right)^{1 / p} \tag{2.7}
\end{equation*}
$$

Since every term of the series is a convex function of λ, it follows that G is convex on $[-1,1]$. The power series also shows that G is C^{∞} smooth on $(0,1)$. For $\lambda>1$ the symmetry property (2.4) yields $G(\lambda)=\lambda G(1 / \lambda)$ which is a convex function by virtue of the
identity $G^{\prime \prime}(\lambda)=\lambda^{-3} G^{\prime \prime}(1 / \lambda)$. The piecewise convexity of G on $[0,1]$ and $[1, \infty)$ will imply its convexity on $[0, \infty)$ (hence on \mathbb{R}) as soon as we show that G is differentiable at $\lambda=1$. Note that $\left|1+\lambda e^{i t}\right|^{p}$ is differentiable with respect to λ when $e^{i t} \neq-1$ and that for λ close to 1 ,

$$
\begin{equation*}
\left.\frac{\partial}{\partial \lambda}\left|1+\lambda e^{i t}\right|^{p} \leq p\left|1+\lambda e^{i t}\right|^{p-1}\right) \leq C|t-\pi|^{p-1} \tag{2.8}
\end{equation*}
$$

for all $t \in[0,2 \pi] \backslash\{\pi\}$, with C independent of λ, t. The integrability of the right hand side of (2.8) justifies differentiation under the integral sign:

$$
\frac{d}{d \lambda} G(\lambda)^{p}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\partial}{\partial \lambda}\left|1+\lambda e^{i t}\right|^{p} d t
$$

Thus $G^{\prime}(1)$ exists.
Now that G is known to be convex, the convexity of the function $F(x, y):=\|(x, y)\|_{H^{p}}=$ $x G(y / x)$ on the halfplane $(x, y) \in \mathbb{R}^{2}, x>0$, follows by computing its Hessian, which exists when $|y| \neq x$:

$$
H_{F}=G^{\prime \prime}(y / x)\left(\begin{array}{cc}
x^{-3} y^{2} & -x^{-2} y \\
-x^{-2} y & x^{-1}
\end{array}\right)
$$

Since H_{F} is positive semidefinite, and F is C^{1} smooth even on the lines $|y|=|x|$, the function F is convex on the halfplane $x>0$. By symmetry, convexity holds on other coordinate halfplanes as well, and thus on all of \mathbb{R}^{2}. The fact that G is an increasing function on $[0, \infty)$ also shows that F is an increasing function of each of its variables in the first quadrant $x, y \geq 0$.

Finally, for any two points $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ in \mathbb{C}^{2} we have

$$
\begin{aligned}
\left\|\left(a_{1}+b_{1}, a_{2}+b_{2}\right)\right\|_{H^{p}} & =F\left(\left|a_{1}+b_{1}\right|,\left|a_{2}+b_{2}\right|\right) \leq F\left(\left|a_{1}\right|+\left|b_{1}\right|,\left|a_{2}\right|+\left|b_{2}\right|\right) \\
& \leq F\left(\left|a_{1}\right|,\left|a_{2}\right|\right)+F\left(\left|b_{1}\right|,\left|b_{2}\right|\right)=\left\|\left(a_{1}, a_{2}\right)\right\|_{H^{p}}+\left\|\left(b_{1}, b_{2}\right)\right\|_{H^{p}}
\end{aligned}
$$

using (2.4) and the monotonicity and convexity of F.
Remark 2.2. In view of Theorem 2.1 one might guess that the restriction of H^{p} quasinorm to the polynomials of degree at most n should satisfy the triangle inequality provided that $p>p_{n}$ for some $p_{n}<1$. This is not so: the triangle inequality fails for any $p<1$ even when the quasinorm is restricted to quadratic polynomials. Indeed, for small $\lambda \in \mathbb{R}$ we have

$$
\begin{aligned}
\|(\lambda, 1, \lambda)\|_{H^{p}}^{p} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}(1+2 \lambda \cos t)^{p} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(1+2 \lambda p \cos t+2 \lambda^{2} p(p-1) \cos ^{2} t+O\left(\lambda^{3}\right)\right) d t \\
& =1+\lambda^{2} p(p-1)+O\left(\lambda^{3}\right)
\end{aligned}
$$

and this quantity has a strict local maximum at $\lambda=0$ provided that $0<p<1$.

3. Dual Hardy norms on polynomials

The space \mathbb{C}^{n} is equipped with the inner product $\langle\xi, \eta\rangle=\sum_{k=1}^{n} \xi_{k} \overline{\eta_{k}}$. Let H_{*}^{p} be the norm on \mathbb{C}^{n} dual to H^{p}, that is

$$
\begin{equation*}
\|\xi\|_{H_{*}^{p}}=\sup \left\{|\langle\xi, \eta\rangle|:\|\eta\|_{H^{p}} \leq 1\right\}=\sup _{\eta \in \mathbb{C}^{n} \backslash\{0\}} \frac{|\langle\xi, \eta\rangle|}{\|\eta\|_{H^{p}}} . \tag{3.1}
\end{equation*}
$$

One cannot expect the H_{*}^{p} norm to agree with H^{q} for $q=p /(p-1)$ (unless $p=2$), as the duality of Hardy spaces is not isometric [5, Section 7.2]. However, on the space \mathbb{C}^{2} the H_{*}^{1} norm turns out to be surprisingly close to H^{4}, indicating that H^{1} and H^{4} have nearly isometric duality in this setting. The following is a restatement of Theorem 1.2 in the form that is convenient for the proof.

Theorem 3.1. For all $\xi \in \mathbb{C}^{2}$ we have

$$
\begin{equation*}
\|\xi\|_{H^{1}} \leq\|\xi\|_{H_{*}^{4}} \leq 1.01\|\xi\|_{H^{1}} \tag{3.2}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\|\xi\|_{H^{4}} \leq\|\xi\|_{H_{*}^{1}} \leq 1.01\|\xi\|_{H^{4}} \tag{3.3}
\end{equation*}
$$

It should be noted that while the H^{1} norm on \mathbb{C}^{2} is a non-elementary function (2.3), the H^{4} norm has a simple algebraic form (2.1). To see that having the exponent $p=4$, rather than the expected $p=\infty$, is essential in Theorem 3.1, compare the following:

$$
\begin{align*}
\|(1,1)\|_{H_{*}^{1}} & =\frac{2}{\|(1,1)\|_{H^{1}}}=\frac{\pi}{2} \approx 1.57 \\
\|(1,1)\|_{H^{\infty}} & =2 \tag{3.4}\\
\|(1,1)\|_{H^{4}} & =6^{1 / 4} \approx 1.57
\end{align*}
$$

The proof of Theorem 3.1 requires an elementary lemma from analytic geometry.
Lemma 3.2. If $0<r<a$ and $b \in \mathbb{R}$, then

$$
\begin{equation*}
\sup _{\theta \in \mathbb{R}} \frac{b-r \sin \theta}{a-r \cos \theta}=\frac{a b+r \sqrt{a^{2}+b^{2}-r^{2}}}{a^{2}-r^{2}} . \tag{3.5}
\end{equation*}
$$

Proof. The quantity being maximized is the slope of a line through (a, b) and a point on the circle $x^{2}+y^{2}=r^{2}$. The slope is maximized by one of two tangent lines to the circle passing through (a, b). Let $\tan \alpha=b / a$ be the slope of the line L through $(0,0)$ and (a, b). This line makes angle β with the tangents, where $\tan \beta=r / \sqrt{a^{2}+b^{2}-r^{2}}$. Thus, the slope of the tangent of interest is

$$
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{b \sqrt{a^{2}+b^{2}-r^{2}}+a r}{a \sqrt{a^{2}+b^{2}-r^{2}}-b r}
$$

which simplifies to (3.5).

Proof of Theorem 3.1. Because of the symmetry properties (2.4) and the homogeneity of norms, it suffices to consider $\xi=(1, \lambda)$ with $0 \leq \lambda \leq 1$. This restriction on λ will remain in force throughout this proof.

The function

$$
G(\lambda):=\|(1, \lambda)\|_{H^{1}}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+\lambda e^{i t}\right| d t
$$

has been intensely studied due to its relation with the arclength of the ellipse and the complete elliptic integral [1, 3]. It can be written as

$$
\begin{equation*}
G(\lambda)=\frac{L(x, y)}{\pi(x+y)}={ }_{2} F_{1}\left(-1 / 2,-1 / 2 ; 1 ; \lambda^{2}\right)=\sum_{n=0}^{\infty}\left(\frac{(-1 / 2)_{n}}{n!}\right)^{2} \lambda^{2 n} \tag{3.6}
\end{equation*}
$$

where L is the length of the ellipse with semi-axes x, y and $\lambda=(x-y) /(x+y)$. The Pochhammer symbol $(z)_{n}=z(z+1) \cdots(z+n-1)$ and the hypergeometric function ${ }_{2} F_{1}$ are involved in (3.6) as well. A direct way to obtain the Taylor series (3.6) for G is to use the binomial series as in (2.7).

As noted in (2.1), the H^{4} norm of $(1, \lambda)$ is an elementary function:

$$
F(\lambda):=\|(1, \lambda)\|_{H^{4}}=\left(1+4 \lambda^{2}+\lambda^{4}\right)^{1 / 4}
$$

The dual norm H_{*}^{4} can be expressed as

$$
\begin{equation*}
F^{*}(\lambda):=\|(1, \lambda)\|_{H_{*}^{4}}=\sup _{t \in \mathbb{R}} \frac{1+\lambda t}{\left(1+4 t^{2}+t^{4}\right)^{1 / 4}} \tag{3.7}
\end{equation*}
$$

where the second equality follows from (3.1) by letting $b=(1, t)$. Similarly, the H_{*}^{1} norm of $(1, \lambda)$ is

$$
\begin{equation*}
G^{*}(\lambda):=\|(1, \lambda)\|_{H_{*}^{1}}=\sup _{t \in \mathbb{R}} \frac{1+\lambda t}{G(t)} \tag{3.8}
\end{equation*}
$$

Our first goal is to prove that

$$
\begin{equation*}
G^{*}(\lambda) \leq 1.01 F(\lambda) \tag{3.9}
\end{equation*}
$$

The proof of (3.9) is based on Ramanujan's approximation $G(\lambda) \approx 3-\sqrt{4-\lambda^{2}}$ which originally appeared in [13] see [1] for a discussion of the history of this and several other approximations to G. Barnard, Pearce, and Richards [3, Proposition 2.3] proved that Ramanujan's approximation gives a lower bound for G :

$$
\begin{equation*}
G(\lambda) \geq 3-\sqrt{4-\lambda^{2}} \tag{3.10}
\end{equation*}
$$

We will use this estimate to obtain an upper bound for G^{*}.
The supremum in (3.8) only needs to be taken over $t \geq 0$ since the denominator is an even function. Furthermore, it can be restricted to $t \in[0,1]$ because for $t>1$ the homogeneity
and symmetry properties of H^{1} norm imply

$$
\frac{1+\lambda t}{\|(1, t)\|_{H^{1}}}=\frac{t^{-1}+\lambda}{\left\|\left(1, t^{-1}\right)\right\|_{H^{1}}}<\frac{1+\lambda t^{-1}}{\left\|\left(1, t^{-1}\right)\right\|_{H^{1}}}
$$

Restricting t to $[0,1]$ in (3.8) allows us to use inequality (3.10):

$$
\begin{equation*}
G^{*}(\lambda) \leq \sup _{t \in[0,1]} \frac{1+\lambda t}{3-\sqrt{4-t^{2}}} \tag{3.11}
\end{equation*}
$$

Writing $t=-2 \sin \theta$ and applying Lemma 3.5 we obtain

$$
\begin{align*}
G^{*}(\lambda) & \leq \lambda \sup _{\theta \in[-\pi / 6,0]} \frac{\lambda^{-1}-2 \sin \theta}{3-2 \cos \theta} \leq \lambda \frac{3 \lambda^{-1}+2 \sqrt{5+\lambda^{-2}}}{5} \tag{3.12}\\
& =\frac{3+2 \sqrt{1+5 \lambda^{2}}}{5}
\end{align*}
$$

The function

$$
f(s):=\frac{3+2 \sqrt{1+5 s}}{\left(1+4 s+s^{2}\right)^{1 / 4}}
$$

is increasing on $[0,1]$. Indeed,

$$
f^{\prime}(s)=\frac{3(6 s+2-(s+2) \sqrt{1+5 s})}{2 \sqrt{1+5 s}\left(1+4 s+s^{2}\right)^{5 / 4}}
$$

which is positive on $(0,1)$ because

$$
(6 s+2)^{2}-(s+2)^{2}(1+5 s)=5 s^{2}(3-s)>0
$$

Since f is increasing, the estimate (3.12) implies

$$
\frac{G^{*}(\lambda)}{F(\lambda)} \leq \frac{1}{5} f\left(\lambda^{2}\right) \leq \frac{1}{5} f(1)=\frac{3+2 \sqrt{6}}{5 \cdot 6^{1 / 4}}<1.01
$$

This completes the proof of (3.9).
Our second goal is the following comparison of F^{*} and G with a polynomial:

$$
\begin{equation*}
G(\lambda) \leq 1+\frac{1}{4} \lambda^{2}+\frac{1}{64} \lambda^{4}+\frac{1}{128} \lambda^{6} \leq F^{*}(\lambda) \tag{3.13}
\end{equation*}
$$

To prove the left hand side of (3.13), let $T_{4}(\lambda)=1+\lambda^{2} / 4+\lambda^{4} / 64$ be the Taylor polynomial of G of degree 4. Since all Taylor coefficients of G are nonnegative (3.6), the function

$$
\phi(\lambda):=\frac{G(\lambda)-T_{4}(\lambda)}{\lambda^{6}}-\frac{1}{128}
$$

is increasing on $(0,1]$. At $\lambda=1$, in view of (2.2), it evaluates to

$$
G(1)-1-\frac{1}{4}-\frac{1}{64}-\frac{1}{128}=\frac{4}{\pi}-\frac{163}{128}
$$

which is negative because $512 / 163=3.1411 \ldots<\pi$. Thus $\phi(\lambda)<0$ for $0<\lambda \leq 1$, proving the left hand side of (3.13).

The right hand side of (3.13) amounts to the claim that for every λ there exists $t \in \mathbb{R}$ such that

$$
\frac{1+\lambda t}{\left(1+4 t^{2}+t^{4}\right)^{1 / 4}} \geq 1+\frac{1}{4} \lambda^{2}+\frac{1}{64} \lambda^{4}+\frac{1}{128} \lambda^{6}
$$

This is equivalent to proving that the polynomial

$$
\Phi(\lambda, t):=(1+\lambda t)^{4}-\left(1+4 t^{2}+t^{4}\right)\left(1+\frac{1}{4} \lambda^{2}+\frac{1}{64} \lambda^{4}+\frac{1}{128} \lambda^{6}\right)^{4}
$$

satisfies $\Phi(\lambda, t) \geq 0$ for some t depending on λ. We will do so by choosing $t=4 \lambda /\left(8-3 \lambda^{2}\right)$. The function

$$
\Psi(\lambda):=\left(8-3 \lambda^{2}\right)^{4} \Phi\left(\lambda, 4 \lambda /\left(8-3 \lambda^{2}\right)\right)
$$

is a polynomial in λ with rational coefficients. Specifically,

$$
\begin{align*}
\frac{\Psi(\lambda)}{\lambda^{8}} & =50+\lambda^{2}-\frac{149}{2^{4}} \lambda^{4}-\frac{209}{2^{6}} \lambda^{6}-\frac{5375}{2^{12}} \lambda^{8}-\frac{3069}{2^{13}} \lambda^{10}-\frac{8963}{2^{17}} \lambda^{12} \tag{3.14}\\
& -\frac{7837}{2^{19}} \lambda^{14}-\frac{36209}{2^{24}} \lambda^{16}-\frac{2049}{2^{23}} \lambda^{18}-\frac{1331}{2^{25}} \lambda^{20}-\frac{45}{2^{25}} \lambda^{22}-\frac{81}{2^{28}} \lambda^{24}
\end{align*}
$$

which any computer algebra system will readily confirm. On the right hand side of (3.14), the coefficients of $\lambda^{4}, \lambda^{6}, \lambda^{8}$ are less than 10 in absolute value, while the coefficients of higher powers are less than 1 in absolute value. Thanks to the constant term of 50 , the expression (3.14) is positive as long as $0<\lambda \leq 1$. This completes the proof of (3.13).

In conclusion, we have $G(\lambda) \leq F^{*}(\lambda)$ from (3.13) and $G^{*}(\lambda) \leq 1.01 F(\lambda)$ from (3.9). This proves the first half of (3.2) and the second half of (3.3). The other parts of (3.2)-(3.3) follow by duality.

4. SCHWARZ LEMMA FOR HARMONIC MAPS

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disk in the complex plane. The classical Schwarz lemma concerns holomorphic maps $f: \mathbb{D} \rightarrow \mathbb{D}$ normalized by $f(0)=0$. It asserts in part that $\left|f^{\prime}(0)\right| \leq 1$ for such maps. This inequality is best possible in the sense that for any complex number α such that $|\alpha| \leq 1$ there exists f as above with $f^{\prime}(0)=\alpha$. Indeed, $f(z)=\alpha z$ works.

The story of the Schwarz lemma for harmonic maps $f: \mathbb{D} \rightarrow \mathbb{D}$, still normalized by $f(0)=0$, is more complicated. Such maps satisfy the Laplace equation $\partial \bar{\partial} f=0$ written here in terms of Wirtinger's derivatives

$$
\partial f=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), \quad \bar{\partial} f=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .
$$

The estimate $|f(z)| \leq \frac{4}{\pi} \tan ^{-1}|z|$ (see [6] or [4, p. 77]) implies that

$$
\begin{equation*}
|\partial f(0)|+|\bar{\partial} f(0)| \leq \frac{4}{\pi} \tag{4.1}
\end{equation*}
$$

Numerous generalizations and refinements of the harmonic Schwarz lemma appeared in recent years [8, 10]. An important difference with the holomorphic case is that (4.1) does not completely describe the possible values of the derivative $(\partial f(0), \bar{\partial} f(0))$. Indeed, an application of Parseval's identity shows that

$$
\begin{equation*}
|\partial f(0)|^{2}+|\bar{\partial} f(0)|^{2} \leq 1 \tag{4.2}
\end{equation*}
$$

and neither of (4.1) and (4.2) imply each other. It turns out that the complete description of possible derivatives at 0 requires the dual Hardy norm from (3.1). The following is a refined form of Theorem 1.1 from the introduction.

Theorem 4.1. For a vector $(\alpha, \beta) \in \mathbb{C}^{2}$ the following are equivalent:
(i) there exists a harmonic map $f: \mathbb{D} \rightarrow \mathbb{D}$ with $f(0)=0, \partial f(0)=\alpha$, and $\bar{\partial} f(0)=\beta$;
(ii) there exists a harmonic map $f: \mathbb{D} \rightarrow \mathbb{D}$ with $\partial f(0)=\alpha$ and $\bar{\partial} f(0)=\beta$;
(iii) $\|(\alpha, \beta)\|_{H_{*}^{1}} \leq 1$.

Remark 4.2. Both (4.1) and (4.2) easily follow from Theorem 4.1) To obtain (4.1), use the definition of H_{*}^{1} together with the fact that $\left\|\left(a_{1}, a_{2}\right)\right\|_{H^{1}}=4 / \pi$ whenever $\left|a_{1}\right|=\left|a_{2}\right|=1$ (see (2.2), (2.4)). To obtain (4.2), use the comparison of Hardy norms: $\|\cdot\|_{H^{1}} \leq\|\cdot\|_{H^{2}}$, hence $\|\cdot\|_{H_{*}^{1}} \geq\|\cdot\|_{H_{*}^{2}}=\|\cdot\|_{H^{2}}$.

Remark 4.3. Combining Theorem 4.1 with Theorem 3.1 we obtain

$$
\begin{equation*}
\|(\partial f(0), \bar{\partial} f(0))\|_{H^{4}} \leq 1 \tag{4.3}
\end{equation*}
$$

for any harmonic map $f: \mathbb{D} \rightarrow \mathbb{D}$. In view of (2.1) this means $|\partial f(0)|^{4}+4|\partial f(0) \bar{\partial} f(0)|^{2}+$ $|\bar{\partial} f(0)|^{4} \leq 1$.

Proof of Theorem 4.1. (ii) \Longrightarrow (iii) is trivial. Suppose that (iii) holds. To prove (iiii), we must show that

$$
\begin{equation*}
|\alpha \bar{\gamma}+\beta \bar{\delta}| \leq\|(\gamma, \delta)\|_{H^{1}} \tag{4.4}
\end{equation*}
$$

for every vector $(\gamma, \delta) \in \mathbb{C}^{2}$. Let $g(z)=\gamma z+\delta \bar{z}$. Expanding f into the Taylor series $f(z)=f(0)+\alpha z+\beta \bar{z}+\ldots$ and using the orthogonality of monomials on every circle $|z|=r, 0<r<1$, we obtain

$$
\begin{equation*}
|\alpha \bar{\gamma}+\beta \bar{\delta}|=\frac{1}{2 \pi r^{2}}\left|\int_{0}^{2 \pi} f\left(r e^{i t}\right) \overline{g\left(r e^{i t}\right)} d t\right| \leq \frac{1}{2 \pi r^{2}} \int_{0}^{2 \pi}\left|g\left(r e^{i t}\right)\right| d t . \tag{4.5}
\end{equation*}
$$

Letting $r \rightarrow 1$ and observing that
$\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\gamma e^{i t}+\delta e^{-i t}\right| d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\gamma+\delta e^{-2 i t}\right| d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\gamma+\delta e^{i t}\right| d t=\|(\gamma, \delta)\|_{H^{1}}$ completes the proof of (4.4).

It remains to prove the implication (iiii) \Longrightarrow (iil). Let \mathcal{F}_{0} be the set of harmonic maps $f: \mathbb{D} \rightarrow \mathbb{D}$ such that $f(0)=0$, and let $\mathcal{D}=\left\{(\partial f(0), \bar{\partial} f(0)): f \in \mathcal{F}_{0}\right\}$. Since \mathcal{F}_{0} is closed under convex combinations, the set \mathcal{D} is convex. Since the function $f(z)=\alpha z+\beta \bar{z}$ belongs to \mathcal{F}_{0} when $|\alpha|+|\beta| \leq 1$, the point $(0,0)$ is an interior point of \mathcal{D}. The estimate (4.2) shows that \mathcal{D} is bounded. Furthermore, $c \mathcal{D} \subset \mathcal{D}$ for any complex number c with $|c| \leq 1$, because \mathcal{F}_{0} has the same property. We claim that \mathcal{D} is also a closed subset of \mathbb{C}^{2}. Indeed, suppose that a sequence of vectors $\left(\alpha_{n}, \beta_{n}\right) \in \mathcal{D}$ converges to $(\alpha, \beta) \in \mathbb{C}^{2}$. Pick a corresponding sequence of maps $f_{n} \in \mathcal{F}_{0}$. Being uniformly bounded, the maps $\left\{f_{n}\right\}$ form a normal family [2, Theorem 2.6]. Hence there exists a subsequence $\left\{f_{n_{k}}\right\}$ which converges uniformly on compact subsets of \mathbb{D}. The limit of this subsequence is a map $f \in \mathcal{F}_{0}$ with $\partial f(0)=\alpha$ and $\bar{\partial} f(0)=\beta$.

The preceding paragraph shows that \mathcal{D} is the closed unit ball for some norm $\|\cdot\|_{\mathcal{D}}$ on \mathbb{C}^{2}. The implication (iiii) \Longrightarrow (i) amounts to the statement that $\|\cdot\|_{\mathcal{D}} \leq\|\cdot\|_{H_{*}^{1}}$. We will prove it in the dual form

$$
\begin{equation*}
\sup \{|\gamma \bar{\alpha}+\delta \bar{\beta}|:(\alpha, \beta) \in \mathcal{D}\} \geq\|(\gamma, \delta)\|_{H^{1}} \quad \text { for all }(\gamma, \delta) \in \mathbb{C}^{2} \tag{4.7}
\end{equation*}
$$

Since norms are continuous functions, it suffices to consider $(\gamma, \delta) \in \mathbb{C}^{2}$ with $|\gamma| \neq|\delta|$. Let $g: \mathbb{D} \rightarrow \mathbb{D}$ be the harmonic map with boundary values

$$
g(z)=\frac{\gamma z+\delta \bar{z}}{|\gamma z+\delta \bar{z}|}, \quad|z|=1 .
$$

Note that $g(-z)=-g(z)$ on the boundary, and therefore everywhere in \mathbb{D}. In particular, $g(0)=0$, which shows $g \in \mathcal{F}_{0}$. Let $(\alpha, \beta)=(\partial g(0), \bar{\partial} g(0)) \in \mathcal{D}$. A computation similar to (4.5) shows that

$$
\begin{aligned}
\gamma \bar{\alpha}+\delta \bar{\beta} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\gamma e^{i t}+\delta e^{-i t}\right) \overline{g\left(e^{i t}\right)} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\gamma e^{i t}+\delta e^{-i t}\right) \frac{\overline{\gamma e^{i t}+\delta e^{-i t}}}{\left|\gamma e^{i t}+\delta e^{-i t}\right|} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\gamma e^{i t}+\delta e^{-i t}\right| d t=\|(\gamma, \delta)\|_{H^{1}}
\end{aligned}
$$

where the last step uses (4.6). This proves (4.7) and completes the proof of Theorem4.1.

5. Higher dimensions

A version of the Schwarz lemma is also available for harmonic maps of the (Euclidean) unit ball \mathbb{B} in \mathbb{R}^{n}. Let $\mathbb{S}=\partial \mathbb{B}$. For a square matrix $A \in \mathbb{R}^{n \times n}$, define its Hardy quasinorm by

$$
\begin{equation*}
\|A\|_{H^{p}}=\left(\int_{\mathbb{S}}\|A x\|^{p} d \mu(x)\right)^{1 / p} \tag{5.1}
\end{equation*}
$$

where the integral is taken with respect to normalized surface measure μ on \mathbb{S} and the vector norm $\|A x\|$ is the Euclidean norm. In the limit $p \rightarrow \infty$ we recover the spectral norm of A, while the special case $p=2$ yields the Frobenius norm of A divided by \sqrt{n}. The case $p=1$ corresponds to "expected value norms" studied by Howe and Johnson in [7]. Also, letting $p \rightarrow 0$ leads to

$$
\begin{equation*}
\|A\|_{H^{0}}=\exp \left(\int_{\mathbb{S}} \log \|A x\| d \mu(x)\right) \tag{5.2}
\end{equation*}
$$

In general, H^{p} quasinorms on matrices are not submultiplicative. However, they have another desirable feature, which follows directly from (5.1): $\|U A V\|_{H^{p}}=\|A\|_{H^{p}}$ for any orthogonal matrices U, V. The singular value decomposition shows that $\|A\|_{H^{p}}=\|D\|_{H^{p}}$ where D is the diagonal matrix with the singular values of A on its diagonal.

Let us consider the matrix inner product $\langle A, B\rangle=\frac{1}{n} \operatorname{tr}\left(B^{T} A\right)$, which is normalized so that $\langle I, I\rangle=1$. This inner product can be expressed by an integral involving the standard inner product on \mathbb{R}^{n} as follows:

$$
\begin{equation*}
\langle A, B\rangle=\int_{\mathbb{S}}\langle A x, B x\rangle d \mu(x) . \tag{5.3}
\end{equation*}
$$

Indeed, the right hand side of (5.3) is the average of the numerical values $\left\langle B^{T} A x, x\right\rangle$, which is known to be the normalized trace of $B^{T} A$, see 9$]$.

The dual norms H_{*}^{p} are defined on $\mathbb{R}^{n \times n}$ by

$$
\begin{equation*}
\|A\|_{H_{*}^{p}}=\sup \left\{\langle A, B\rangle:\|B\|_{H^{p}} \leq 1\right\}=\sup _{B \in \mathbb{R}^{n \times n} \backslash\{0\}} \frac{\langle A, B\rangle}{\|B\|_{H^{p}}} . \tag{5.4}
\end{equation*}
$$

Applying Hölder's inequality to (5.3) yields $\langle A, B\rangle \leq\|A\|_{H^{q}}\|B\|_{H^{p}}$ when $p^{-1}+q^{-1}=1$. Hence $\|A\|_{H_{*}^{p}} \leq\|A\|_{H^{q}}$ but in general the inequality is strict. As an exception, we have $\|A\|_{H_{*}^{2}}=\|A\|_{H^{2}}$ because $\langle A, A\rangle=\|A\|_{H^{2}}^{2}$. As in the case of polynomials, our interest in dual Hardy norms is driven by their relation to harmonic maps.

Theorem 5.1. For a matrix $A \in \mathbb{R}^{n \times n}$ the following are equivalent:
(i) there exists a harmonic map $f: \mathbb{B} \rightarrow \mathbb{B}$ with $f(0)=0$ and $D f(0)=A$;
(ii) there exists a harmonic map $f: \mathbb{B} \rightarrow \mathbb{B}$ with $D f(0)=A$;
(iii) $\|A\|_{H_{*}^{1}} \leq 1$.

Proof. Since the proof is essentially the same as of Theorem 4.1, we only highlight some notational differences. Suppose (iii) holds. Expand f into a series of spherical harmonics, $f(x)=\sum_{d=0}^{\infty} p_{d}(x)$ where $p_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a harmonic polynomial map that is homogeneous of degree d. Note that $p_{1}(x)=A x$. For any $n \times n$ matrix B the orthogonality of spherical
harmonics [2, Proposition 5.9] yields

$$
\langle A, B\rangle=\lim _{r \nearrow_{1}^{1}} \int_{\mathbb{S}}\langle f(r x), B x\rangle d \mu(x) \leq\|B\|_{1}
$$

which proves (iii).
The proof of (iiii) \Longrightarrow (ii) is based on considering, for any nonsingular matrix B, a harmonic map $g: \mathbb{B} \rightarrow \mathbb{B}$ with boundary values $g(x)=(B x) /\|B x\|$. Its derivative $A=D g(0)$ satisfies

$$
\langle B, A\rangle=\int_{\mathbb{S}}\langle B x, g(x)\rangle d \mu(x)=\int_{\mathbb{S}} \frac{\langle B x, B x\rangle}{\|B x\|} d \mu(x)=\|B\|_{H^{1}}
$$

and (ii) follows by the same duality argument as in Theorem 4.1.
As an indication that the near-isometric duality of H^{1} and H^{4} norms (Theorem 3.1) may also hold in higher dimensions, we compute the relevant norms of P_{k}, the matrix of an orthogonal projection of rank k in \mathbb{R}^{3}. For rank 1 projection, the norms are

$$
\begin{aligned}
& \left\|P_{1}\right\|_{H^{1}}=\int_{0}^{1} r d r=\frac{1}{2}, \\
& \left\|P_{1}\right\|_{H^{4}}=\left(\int_{0}^{1} r^{4} d r\right)^{1 / 4}=\frac{1}{5^{1 / 4}} \approx 0.67, \\
& \left\|P_{1}\right\|_{H_{*}^{1}}=\frac{\left\langle P_{1}, P_{1}\right\rangle}{\left\|P_{1}\right\|_{1}}=\frac{1 / 3}{1 / 2}=\frac{2}{3} \approx 0.67 .
\end{aligned}
$$

For rank 2 projection, they are

$$
\begin{aligned}
& \left\|P_{2}\right\|_{H^{1}}=\int_{0}^{1} \sqrt{1-r^{2}} d r=\frac{\pi}{4} \\
& \left\|P_{2}\right\|_{H^{4}}=\left(\int_{0}^{1}\left(1-r^{2}\right)^{2} d r\right)^{1 / 4}=\left(\frac{8}{15}\right)^{1 / 4} \approx 0.85, \\
& \left\|P_{2}\right\|_{H_{*}^{1}}=\frac{\left\langle P_{2}, P_{2}\right\rangle}{\left\|P_{2}\right\|_{1}}=\frac{2 / 3}{\pi / 4}=\frac{8}{3 \pi} \approx 0.85 .
\end{aligned}
$$

This numerical agreement does not appear to be merely a coincidence, as numerical experiments with random 3×3 indicate that the ratio $\|A\|_{H_{*}^{1}} /\|A\|_{H^{4}}$ is always near 1 . However, we do not have a proof of this.

As in the case of polynomials, there is an explicit formula for the H^{4} norm of matrices. Writing $\sigma_{1}, \ldots, \sigma_{n}$ for the singular values of A, we find

$$
\begin{equation*}
\|A\|_{H^{4}}^{4}=\alpha \sum_{k=1}^{n} \sigma_{k}^{4}+2 \beta \sum_{k<l} \sigma_{k}^{2} \sigma_{l}^{2} \tag{5.5}
\end{equation*}
$$

where $\alpha=\int_{\mathbb{S}} x_{1}^{4} d \mu(x)$ and $\beta=\int_{\mathbb{S}} x_{1}^{2} x_{2}^{2} d \mu(x)$. For example, if $n=3$, the expression (5.5) evaluates to

$$
\|A\|_{H^{4}}^{4}=\frac{1}{5} \sum_{k=1}^{3} \sigma_{k}^{4}+\frac{2}{15} \sum_{k<l} \sigma_{k}^{2} \sigma_{l}^{2} .
$$

Theorem 2.1 has a corollary for 2×2 matrices.
Corollary 5.2. The H^{p} quasinorm on the space of 2×2 matrices satisfies the triangle inequality even when $0 \leq p<1$.

Proof. A real linear map $x \mapsto A x$ in \mathbb{R}^{2} can be written in complex notation as $z \mapsto a z+b \bar{z}$ for some $(a, b) \in \mathbb{C}^{2}$. A change of variable yields

$$
\int_{|z|=1}|a z+b \bar{z}|^{p}=\int_{|z|=1}|a+b z|^{p}
$$

which implies $\|A\|_{H^{p}}=\|(a, b)\|_{H^{p}}$ for $p>0$. The latter is a norm on \mathbb{C}^{2} by Theorem 2.1. The case $p=0$ is treated in the same way.

The aforementioned relation between a 2×2 matrix A and a complex vector (a, b) also shows that the singular values of A are $\sigma_{1}=|a|+|b|$ and $\sigma_{2}=\| a|-|b||$. It then follows from (2.1) that

$$
\|A\|_{H^{0}}=\max (|a|,|b|)=\frac{\sigma_{1}+\sigma_{2}}{2},
$$

which is, up to scaling, the trace norm of A. Unfortunately, this relation breaks down in dimensions $n>2$: for example, rank 1 projection P_{1} in \mathbb{R}^{3} has $\left\|P_{1}\right\|_{H^{0}}=1 / e$ while the average of its singular values is $1 / 3$.

We do not know whether H^{p} quasinorms with $0 \leq p<1$ satisfy the triangle inequality for $n \times n$ matrices when $n \geq 3$.

References

[1] Gert Almkvist and Bruce Berndt. Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the ladies diary. Amer. Math. Monthly, 95(7):585-608, 1988.
[2] Sheldon Axler, Paul Bourdon, and Wade Ramey. Harmonic function theory, volume 137 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2001.
[3] Roger W. Barnard, Kent Pearce, and Kendall C. Richards. A monotonicity property involving ${ }_{3} F_{2}$ and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal., 32(2):403-419, 2000.
[4] Peter Duren. Harmonic mappings in the plane, volume 156 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2004.
[5] Peter L. Duren. Theory of H^{p} spaces. Pure and Applied Mathematics, Vol. 38. Academic Press, New York-London, 1970.
[6] Erhard Heinz. On one-to-one harmonic mappings. Pacific J. Math., 9:101-105, 1959.
[7] Eric C. Howe and Charles R. Johnson. Expected-value norms on matrices. Linear Algebra Appl., 139:2129, 1990.
[8] David Kalaj and Matti Vuorinen. On harmonic functions and the Schwarz lemma. Proc. Amer. Math. Soc., 140(1):161-165, 2012.
[9] Tomasz Kania. A short proof of the fact that the matrix trace is the expectation of the numerical values. Amer. Math. Monthly, 122(8):782-783, 2015.
[10] M. Mateljević. Schwarz lemma and Kobayashi metrics for harmonic and holomorphic functions. J. Math. Anal. Appl., 464(1):78-100, 2018.
[11] Igor E. Pritsker. Inequalities for integral norms of polynomials via multipliers. In Progress in approximation theory and applicable complex analysis, volume 117 of Springer Optim. Appl., pages 83-103. Springer, Cham, 2017.
[12] Q. I. Rahman and G. Schmeisser. Analytic theory of polynomials, volume 26 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2002.
[13] S. Ramanujan. Modular equations and approximations to π [Quart. J. Math. 45 (1914), 350-372]. In Collected papers of Srinivasa Ramanujan, pages 23-39. AMS Chelsea Publ., Providence, RI, 2000.

215 Carnegie, Mathematics Department, Syracuse University, Syracuse, NY 13244, USA E-mail address: lvkovale@syr.edu

215 Carnegie, Mathematics Department, Syracuse University, Syracuse, NY 13244, USA
E-mail address: xyang20@syr.edu

[^0]: 2010 Mathematics Subject Classification. Primary 30H10; Secondary 15A60, 30C10, 31A05, 31B05.
 Key words and phrases. Hardy space, polynomial, dual norm, harmonic mapping, matrix norm.
 L.V.K. supported by the National Science Foundation grant DMS-1764266.
 X.Y. supported by Young Research Fellow award from Syracuse University.

