A HIGHER WEIGHT ANALOGUE OF OGG'S THEOREM ON WEIERSTRASS POINTS

ROBERT DICKS

Abstract

For a positive integer N, we say that ∞ is a Weierstrass point on the modular curve $X_{0}(N)$ if there is a non-zero cusp form of weight 2 on $\Gamma_{0}(N)$ which vanishes at ∞ to order greater than the genus of $X_{0}(N)$. If p is a prime with $p \nmid N$, Ogg proved that ∞ is not a Weierstrass point on $X_{0}(p N)$ if the genus of $X_{0}(N)$ is 0 . We prove a similar result for even weights $k \geq 4$. We also study the space of weight k cusp forms on $\Gamma_{0}(N)$ vanishing to order greater than the dimension.

1. Introduction

If k and N are positive integers, let $S_{k}(N)$ be the rational vector space of cusp forms of weight k on $\Gamma_{0}(N)$ with rational Fourier coefficients. These forms have a Fourier expansion at ∞ of the form

$$
f(z)=\sum_{n=n_{0}}^{\infty} a(n) q^{n} \text { with } a\left(n_{0}\right) \neq 0
$$

and we define $\operatorname{ord}_{\infty}(f):=n_{0}$. Let $g(N)=\operatorname{dim}\left(S_{2}(N)\right)$ be the genus of $X_{0}(N)$. We say that ∞ is a Weierstrass point on the modular curve $X_{0}(N)$ if there exists $0 \neq f \in S_{2}(N)$ such that $\operatorname{ord}_{\infty}(f)>g(N)$. Ogg Ogg78 proved the following theorem.
Theorem 1.1. If p is a prime such that $p \nmid N$, and if $g(N)=0$, then ∞ is not a Weierstrass point on $X_{0}(p N)$.

A non-geometric proof of Theorem 1.1 was given in [AMR09] (previously, certain cases of level $p \ell$ for distinct primes p and ℓ were considered in [Koh04], [Kil08]). To state our first result, when N is a positive integer and p is a prime such that $p \nmid N$, we require the Atkin-Lehner operator $W_{p}^{p N}$ on $S_{k}(p N)$ defined in (2.5). Furthermore, if

$$
f(z)=\sum_{n=n_{0}}^{\infty} a(n) q^{n} \in S_{k}(N)
$$

define

$$
v_{p}(f):=\inf \left\{v_{p}(a(n))\right\} .
$$

With this notation, we prove the following theorem.
Theorem 1.2. Let N be a positive integer and k be a positive even integer. Let p be a prime with $p \geq \max (5, k+1)$ and $p \nmid N$. Suppose that $0 \neq f \in S_{k}(p N)$ satisfies

$$
v_{p}(f)=0, \quad v_{p}\left(\left.f\right|_{k} W_{p}^{p N}\right) \geq 1-k / 2 .
$$

Then

$$
\operatorname{ord}_{\infty}(f) \leq \operatorname{dim}\left(S_{k}(p N)\right)
$$

Date: June 16, 2020.

As a corollary, we prove an analogue of Ogg's theorem.
Corollary 1.3. Suppose that N is a positive integer, that k is a positive even integer, and that p is a prime with $p \geq \max (5, k+1)$ and $p \nmid N$. If $S_{k}(N)=\{0\}$, then for $0 \neq f \in S_{k}(p N)$, we have

$$
\operatorname{ord}_{\infty}(f) \leq \operatorname{dim}\left(S_{k}(p N)\right)
$$

There is a finite list of N and k for which $S_{k}(N)=\{0\}$. For $k=2$, there are 15 such values of N Ono04, pg. 110]. For $k \geq 4$, the rest are

$$
\begin{aligned}
k & =4: N=1,2,3,4 \\
k & =6: N=1,2 \\
k & =8,10,14: N=1
\end{aligned}
$$

It is natural to seek to understand the subspace of forms $f \in S_{k}(N)$ which vanish to order greater than the dimension. If N is a positive integer and k is a positive even integer, define the subspace

$$
W_{k}(N):=\left\{f \in S_{k}(N): \operatorname{ord}_{\infty}(f)>\operatorname{dim}\left(S_{k}(N)\right)\right\}
$$

With this notation, we have $W_{2}(N)=\{0\}$ if and only if ∞ is not a Weierstrass point on $X_{0}(N)$. As a corollary of Theorem 1.2, we obtain a bound for $\operatorname{dim}\left(W_{k}(p N)\right)$.
Corollary 1.4. Suppose that $p \geq \max (5, k+1)$ is a prime satisfying $p \nmid N$. Then we have

$$
\operatorname{dim}\left(W_{k}(p N)\right) \leq \operatorname{dim}\left(S_{k}(N)\right)
$$

Note that this implies Theorem 1.1 in the case $k=2$. It is interesting to note that the bound in Corollary 1.4 is independent of p. Thus, for fixed N, the spaces $W_{k}(p N)$ have uniformly bounded dimension as $p \rightarrow \infty$.

Remark. For squarefree N, Arakawa and Böcherer [AB03] study the space

$$
S_{k}(N)^{*}:=\left\{f \in S_{k}(N): \left.\left.f\right|_{k} W_{p}^{p N}+p^{1-\frac{k}{2}} \right\rvert\, U_{p}=0 \text { for all } p \mid N\right\}
$$

We will use a similar subspace to prove Corollary 1.4 .
The following examples, which we computed with Magma, illustrate Corollary 1.4 for small values of N.

Example. For an example which is sharp, set $N=1, p=19$, and $k=16$. Here, we have $\operatorname{dim}\left(S_{k}(p N)\right)=24$ and $\operatorname{dim}\left(S_{k}(N)\right)=1$. In this case, there is a form $f \in S_{k}(p N)$ with $f=q^{25}+\cdots$.
Example. To get an example which is sharp and for which $p N$ is not prime, set $N=2$, $p=23$, and $k=12$. Here, $\operatorname{dim}\left(S_{k}(p N)\right)=64$ and $\operatorname{dim}\left(S_{k}(N)\right)=2$. In this case, there are forms f and g with $f=q^{67}+\cdots$ and $g=q^{68}+\cdots$.

Example. Corollary 1.4 is not always sharp. For example, set $N=1, p=29$, and $k=28$. Here, $\operatorname{dim}\left(S_{k}(p N)\right)=67$ and $\operatorname{dim}\left(S_{k}(N)\right)=3$. In this case, there is no non-zero $f \in S_{k}(N)$ satisfying ord $(f)>67$.

The paper is organized as follows. Section 2 contains the background necessary to prove these results. Section 3 contains the proof of Theorem 1.2, which uses results from AMR09. Finally, Section 4 contains the proofs of Corollary 1.3 and Corollary 1.4 .

2. Preliminaries on Modular Forms

The definitions and facts given here can be found in [DS05] and [AMR09]. Let N and k be positive integers. Let $\varepsilon_{\infty}(N)$ denote the number of cusps on $X_{0}(N)$, let $g(N)$ denote its genus, and let $\varepsilon_{2}(N), \varepsilon_{3}(N)$ denote the numbers of elliptic points of orders 2 and 3 , respectively. Then we have

$$
\begin{gather*}
g(N)=\frac{\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]}{12}-\frac{1}{2} \varepsilon_{\infty}(N)-\frac{1}{4} \varepsilon_{2}(N)-\frac{1}{3} \varepsilon_{3}(N)+1, \tag{2.1}\\
\varepsilon_{2}(N)= \begin{cases}0 & \text { if } 4 \mid N, \\
\prod_{p \mid N}\left(1+\left(\frac{-4}{p}\right)\right) & \text { otherwise },\end{cases} \\
\varepsilon_{3}(N)= \begin{cases}0 & \text { if } 9 \mid N, \\
\prod_{p \mid N}\left(1+\left(\frac{-3}{p}\right)\right) & \text { otherwise } .\end{cases}
\end{gather*}
$$

We have the well-known formula

$$
\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]=N \prod_{p \mid N}\left(1+\frac{1}{p}\right) .
$$

For weights $k \geq 4$, we have

$$
\begin{equation*}
\operatorname{dim}\left(S_{k}(N)\right)=(k-1)(g(N)-1)+\left\lfloor\frac{k}{4}\right\rfloor \varepsilon_{2}(N)+\left\lfloor\frac{k}{3}\right\rfloor \varepsilon_{3}(N)+\left(\frac{k}{2}-1\right) \varepsilon_{\infty}(N) \tag{2.2}
\end{equation*}
$$

A form in $S_{k}(N)$ may have forced vanishing at the elliptic points. As in AMR09, let $\alpha_{2}(N, k)$ and $\alpha_{3}(N, k)$ count the number of forced complex zeroes of a form $f \in S_{k}(N)$ at the elliptic points of order 2 and 3 , respectively. These are given by

$$
\left(\alpha_{2}(N, k), \alpha_{3}(N, k)\right)= \begin{cases}\left(\varepsilon_{2}(N), 2 \varepsilon_{3}(N)\right) & \text { if } k \equiv 2 \quad(\bmod 12) \tag{2.3}\\ \left(0, \varepsilon_{3}(N)\right) & \text { if } k \equiv 4 \quad(\bmod 12) \\ \left(\varepsilon_{2}(N), 0\right) & \text { if } k \equiv 6 \quad(\bmod 12) \\ \left(0,2 \varepsilon_{3}(N)\right) & \text { if } k \equiv 8 \quad(\bmod 12) \\ \left(\varepsilon_{2}(N), \varepsilon_{3}(N)\right) & \text { if } k \equiv 10 \quad(\bmod 12) \\ (0,0) & \text { if } k \equiv 0 \quad(\bmod 12)\end{cases}
$$

If $d=\operatorname{dim}\left(S_{k}(N)\right)$, then $S_{k}(N)$ has a basis $\left\{f_{1}, \ldots, f_{d}\right\}$ with integer coefficients with the property

$$
\begin{equation*}
f_{i}(z)=a_{i} q^{c_{i}}+O\left(q^{c_{i}+1}\right), \quad 1 \leq i \leq d \tag{2.4}
\end{equation*}
$$

where $a_{i} \neq 0$ and $c_{1}<c_{2}<\ldots<c_{d}$. This fact implies that every non-zero $f \in S_{k}(N)$ has bounded denominators.

For $f \in S_{k}(N)$ and

$$
\alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{Q})
$$

define the weight k slash operator by

$$
\left.f(z)\right|_{k} \alpha:=\operatorname{det}(\alpha)^{\frac{k}{2}}(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right) .
$$

If p is a prime with $p \nmid N$, let $a, b \in \mathbb{Z}$ satisfy $p^{2} a-p N b=p$. Define the Atkin-Lehner operator $W_{p}^{p N}$ on $S_{k}(p N)$ by

$$
\left.f\right|_{k} W_{p}^{p N}:=\left.f\right|_{k}\left(\begin{array}{cc}
p a & 1 \tag{2.5}\\
p N b & p
\end{array}\right)
$$

The operator $W_{p}^{p N}$ preserves the rationality of the coefficients of $f \in S_{k}(N)$ Coh19, Thm. 2.6]. For any prime p, define the U_{p} operator by

$$
\left(\sum a(n) q^{n}\right) \mid U_{p}:=\sum a(p n) q^{n}
$$

The trace map

$$
\operatorname{Tr}_{N}^{p N}: S_{k}(p N) \rightarrow S_{k}(N)
$$

is defined by

$$
\operatorname{Tr}_{N}^{p N}(f): \left.=f+\left.p^{1-\frac{k}{2}} f\right|_{k} W_{p}^{p N} \right\rvert\, U_{p}
$$

This map is surjective, since for $f \in S_{k}(N)$, we have $\operatorname{Tr}_{N}^{p N}(f)=(p+1) f$.

3. Proof of Theorem 1.2

Let N be a positive integer and k be a positive even integer. When $k=2$, Theorem 1.2 follows from AMR09, Thm. 1.1]. Therefore, we may assume that $k \geq 4$. Throughout, let

$$
\begin{aligned}
& \alpha_{2}:=\alpha_{2}(N,(k-1) p+1), \\
& \alpha_{3}:=\alpha_{3}(N,(k-1) p+1),
\end{aligned}
$$

and

$$
I(N):=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right] .
$$

Suppose that $p \geq \max (5, k+1)$ is a prime with $p \nmid N$, and that $f \in S_{k}(p N)$ satisfies $v_{p}(f)=0$ and $v_{p}\left(\left.f\right|_{k} W_{p}^{p N}\right) \geq 1-\frac{k}{2}$. By AMR09, Thm. 4.2], we have

$$
\begin{equation*}
\operatorname{ord}_{\infty}(f) \leq \frac{(k-1) p+1}{12} I(N)-\frac{1}{2} \alpha_{2}-\frac{1}{3} \alpha_{3}-\varepsilon_{\infty}(N)+1 . \tag{3.1}
\end{equation*}
$$

Using (2.1), (2.2), and the facts that $I(p N)=(p+1) I(N)$ and $\varepsilon_{\infty}(p N)=2 \varepsilon_{\infty}(N)$, the proof of Theorem 1.2 reduces to proving that

$$
\begin{equation*}
\frac{k-2}{12} I(N)+\left(\left\lfloor\frac{k}{4}\right\rfloor-\frac{k-1}{4}\right) \varepsilon_{2}(p N)+\left(\left\lfloor\frac{k}{3}\right\rfloor-\frac{k-1}{3}\right) \varepsilon_{3}(p N)+\frac{1}{2} \alpha_{2}+\frac{1}{3} \alpha_{3} \geq 1 . \tag{3.2}
\end{equation*}
$$

The proof of 3.2 breaks up into several cases.
3.1. $\alpha_{2}=0$ and $\alpha_{3}=0$. Suppose that $\varepsilon_{2}(N)=\varepsilon_{3}(N)=0$. Then (3.2) simplifies to

$$
\begin{equation*}
\frac{k-2}{12} I(N) \geq 1 \tag{3.3}
\end{equation*}
$$

The definitions of $\varepsilon_{2}(N)$ and $\varepsilon_{3}(N)$ imply that $N \geq 4$. Thus, we have (3.2) because $I(N) \geq 6$ whenever $N \geq 4$.

Assume now that $\varepsilon_{2}(N) \neq 0$ and $\varepsilon_{3}(N)=0$. From (2.3), we have

$$
(k-1) p+1 \equiv 0 \quad(\bmod 4),
$$

so

$$
(k, p) \equiv(0,1) \text { or }(2,3) \quad(\bmod 4)
$$

The definitions of $\varepsilon_{2}(N)$ and $\varepsilon_{3}(N)$ imply that $N \geq 2$, so that $I(N) \geq 3$. In the former case, (3.2) reduces to

$$
\begin{equation*}
\frac{k-2}{12} I(N)+\frac{1}{2} \varepsilon_{2}(N) \geq 1 \tag{3.4}
\end{equation*}
$$

which holds since $k \geq 4$. In the latter case, (3.2) reduces to (3.3), which holds since $k \geq 6$.
Now assume that $\varepsilon_{2}(N)=0$ and $\varepsilon_{3}(N) \neq 0$. From (2.3), we have $(k-1) p+1 \equiv 0(\bmod 3)$, so

$$
(k, p) \equiv(0,1) \text { or }(2,2) \quad(\bmod 3)
$$

In the first case, (3.2) reduces to

$$
\begin{equation*}
\frac{k-2}{12} I(N)+\frac{2}{3} \varepsilon_{3}(N) \geq 1 \tag{3.5}
\end{equation*}
$$

which holds since $k \geq 6$. If $k \equiv 2(\bmod 3)$, then (3.2) reduces to (3.3), which holds since $k \geq 8$.

Finally, assume that $\varepsilon_{2}(N) \neq 0$ and $\varepsilon_{3}(N) \neq 0$. By (2.3) we have

$$
(k-1) p+1 \equiv 0 \quad(\bmod 12)
$$

Consider the 4 possible classes of $(k, p)(\bmod 12)$. If $(k, p) \equiv(2,11)(\bmod 12)$, then we have $\varepsilon_{2}(p N)=\varepsilon_{3}(p N)=0$, so (3.2) reduces to (3.3). Here, we have $k \geq 14$, so (3.3) holds. If $(k, p) \equiv(6,7)(\bmod 12)$, then (3.2) becomes (3.5), which holds because $k \geq 6$ and $\varepsilon_{3}(N) \geq 1$. If $(k, p) \equiv(8,5)(\bmod 12)$, then (3.2) becomes (3.4). We have $k \geq 8$ and $\varepsilon_{2}(N) \geq 1$, so (3.4) follows. Finally, if $(k, p) \equiv(0,1)(\bmod 12)$, then (3.2) becomes

$$
\begin{equation*}
\frac{k-2}{12} I(N)+\frac{1}{2} \varepsilon_{2}(N)+\frac{2}{3} \varepsilon_{3}(N) \geq 1 \tag{3.6}
\end{equation*}
$$

which holds since $\varepsilon_{2}(N) \geq 1$ and $\varepsilon_{3}(N) \geq 1$. This finishes the proof when $\alpha_{2}=\alpha_{3}=0$. The remaining cases use similar ideas; fewer details will be given.
3.2. $\alpha_{2} \neq 0$ and $\alpha_{3}=0$. In this case, (3.2) becomes

$$
\begin{equation*}
\frac{k-2}{12} I(N)+\left(\left\lfloor\frac{k}{4}\right\rfloor-\frac{k-1}{4}\right) \varepsilon_{2}(p N)+\left(\left\lfloor\frac{k}{3}\right\rfloor-\frac{k-1}{3}\right) \varepsilon_{3}(p N)+\frac{1}{2} \alpha_{2} \geq 1 . \tag{3.7}
\end{equation*}
$$

If $\varepsilon_{3}(N)=0$, then $N \geq 2$. Since $I(N) \geq 3$ and $k \geq 4$, (3.7) holds. So, assume that $\varepsilon_{3}(N) \neq 0$. By (2.3), we have $(k-1) p+1 \equiv 6(\bmod 12)$. The strategy is then to consider the 4 possibilities for $(k, p)(\bmod 12)$. We illustrate this only when $(k, p) \equiv(6,1)(\bmod 12)$. In this case, the quantity in (3.7) is at least $\frac{1}{3} I(N)+\frac{2}{3} \varepsilon_{3}(N) \geq 1$.
3.3. $\alpha_{2}=0$ and $\alpha_{3} \neq 0$. In this case, (3.2) reduces to

$$
\begin{equation*}
\frac{k-2}{12} I(N)+\left(\left\lfloor\frac{k}{4}\right\rfloor-\frac{k-1}{4}\right) \varepsilon_{2}(p N)+\left(\left\lfloor\frac{k}{3}\right\rfloor-\frac{k-1}{3}\right) \varepsilon_{3}(p N)+\frac{1}{3} \alpha_{3} \geq 1 . \tag{3.8}
\end{equation*}
$$

If $\varepsilon_{2}(N)=0$, then $N \geq 3$, so (3.8) holds. So, assume that $\varepsilon_{2}(N) \neq 0$. By (2.3), we have

$$
(k-1) p+1 \equiv 8 \quad(\bmod 12)
$$

so that $\alpha_{3} \geq 2$. We illustrate only the case $(k, p) \equiv(8,1)(\bmod 12)$. In this case, (3.8) reduces to (3.4), which holds since $k \geq 8$.
3.4. $\alpha_{2} \neq 0$ and $\alpha_{3} \neq 0$. By 2.3), we have $(k-1) p+1 \equiv 2$ or $10(\bmod 12)$. We illustrate only the case $(k, p) \equiv(2,1)(\bmod 12)$. In this case, $\alpha_{3}=2 \varepsilon_{3}(N)$, so (3.2) reduces to (3.3), which holds since $k \geq 14$.

4. Proofs of Corollary 1.3 and Corollary 1.4

Proof of Corollary 1.3. Suppose that N is a positive integer, that k is a positive even integer, and that p is a prime with $p \geq \max (5, k+1)$ and $p \nmid N$. Since every non-zero $f \in S_{k}(N)$ has bounded denominators, we may assume that $v_{p}(f)=0$. Since $S_{k}(N)=\{0\}$, we have

$$
\left.\operatorname{Tr}_{N}^{p N}\left(\left.f\right|_{k} W_{p}^{p N}\right)=\left.f\right|_{k} W_{p}^{p N}+p^{1-\frac{k}{2}} f \right\rvert\, U_{p}=0
$$

Thus, $v_{p}\left(\left.f\right|_{k} W_{p}^{N}\right) \geq 1-\frac{k}{2}$, so Corollary 1.3 follows from Theorem 1.2 ,
Proof of Corollary 1.4. Define the subspace

$$
S:=\left\{f \in S_{k}(p N): \left.\left.f\right|_{k} W_{p}^{p N}+p^{1-\frac{k}{2}} f \right\rvert\, U_{p}=0\right\}
$$

Suppose that $0 \neq f \in S$. We apply Theorem 1.2 after clearing denominators to conclude that $\operatorname{ord}_{\infty}(f) \leq \operatorname{dim}\left(S_{k}(p N)\right)$. Thus, $S \cap W_{k}(p N)=\{0\}$. We also have $S \cong \operatorname{ker}\left(\operatorname{Tr}_{p}^{p N}\right)$, since the Atkin-Lehner operator is an isomorphism. Since $\operatorname{Tr}_{p}^{p N}$ is surjective, we have

$$
\operatorname{dim}(S)=\operatorname{dim}\left(S_{k}(p N)\right)-\operatorname{dim}\left(S_{k}(N)\right)
$$

Since $S_{k}(p N)$ contains $S \oplus W_{k}(p N)$, we have $\operatorname{dim}\left(W_{k}(p N)\right) \leq \operatorname{dim}\left(S_{k}(N)\right)$.

5. Acknowledgements

The author would like to thank Scott Ahlgren for suggesting this project and making many helpful comments.

References

[AB03] Tsuneo Arakawa and Siegfried Böcherer, Vanishing of certain spaces of elliptic modular forms and some applications, J. Reine Angew. Math. 559 (2003), 25-51. MR 1989643
[AMR09] Scott Ahlgren, Nadia Masri, and Jeremy Rouse, Vanishing of modular forms at infinity, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1205-1214. MR 2465641
[Coh19] Henri Cohen, Expansions at cusps and Petersson products in Pari/GP, Elliptic integrals, elliptic functions and modular forms in quantum field theory, Texts Monogr. Symbol. Comput., Springer, Cham, 2019, pp. 161-181. MR 3889557
[DS05] Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
[Ogg78] A. P. Ogg, On the Weierstrass points of $X_{0}(N)$, Illinois J. Math. 22 (1978), no. 1, 31-35. MR 0463178
[Ono04] Ken Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020489

Department of Mathematics, University of Illinois, Urbana, IL 61801
Email address: rdicks2@illinois.edu

